Section 2.5. Orientations

Note. In this brief section, we associate a "direction" with a knot determined by a polygonal curve with vertices in the n-tuple $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$. Notice that if we apply a cyclic permutation to these vertices, we get the same knot; for example, $\left(p_{2}, p_{3}, \ldots, p_{n}, p_{1}\right)$ is the same polygonal curve (and so the same knot). In fact, we can reverse the order of the n-tuple to get another representation of the same polygonal curve (\ldots and so the same knot): $\left(p_{n}, p_{n-1}, \ldots, p_{2}, p_{1}\right)$.

Definition. An oriented knot consists of a knot and an ordering of its vertices. The ordering must be chosen so that it determined the original knot. Two orderings are considered equivalent if they differ by a cyclic permutation.

Note. So we have that the orderings of the vertices of a polygonal curve $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is different from the ordering $\left(p_{n}, p_{n-1}, \ldots, p_{1}\right)$. These two orderings represent the same polygonal curve (and so the same knot), but they represent potentially different oriented knots. When create a diagram for an oriented knot, we insert arrows on the segments to indicate the orientation.

Note. If a knot is oriented then an elementary deformation produces an oriented knot. So we can define equivalence of oriented knots the same way defined equivalent knots (namely, using a sequence of elementary deformations that deform one of the oriented knots into the other).

Definition. Oriented knots are oriented equivalent if there is a sequence of elementary deformations carrying one oriented knot to the other.

Note. Two oriented knots can be non-equivalent, yet still be equivalent (as knots, with the orientations ignored). The first such example was given by H. F. Trotter. He showed that the (3,5,7)-pretzel knot can be oriented in two was, by the resulting oriented knots are not oriented equivalent. Here is his Figure 1(a) (notice that the $(3,5,7)$-pretzel is equivalent to the $(5,7,3)$-pretzel and, in turn, equivalent to the (7,3,5)-pretzel by Exercise 1.2).

$$
p=7, a=3, r=5
$$

These results appear in: H. F. Trotter, Non-invertible Knots Exist, Topology, 2(4), 341-358 (1963); a copy can be viewed online at Science Direct (accessed 1/30/2021).

Note. We will make use of the following definitions later.

Definition. The reverse of the oriented knot determined by the n-tuple of vertices $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, is the oriented knot K^{r} determined by the n-tuple consisting of the same vertices but with their order reversed: $\left(p_{n}, p_{n-1}, \ldots, p_{1}\right)$. An oriented knot K is reversible if K and K^{r} are oriented equivalent. If K is not oriented, it is reversible if for some choice of orientation it is reversible.

Note. H. F. Trotter's general result in the paper mentioned above states (in terms of our definitions):

Theorem 1. (Trotter, 1963). Let p, q, r be odd integers such that $|p|,|q|$, and $|r|$ are distinct and greater than 1. Then the (p, q, r)-pretzel in not reversible.

