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Section 3.5. The Alexander Polynomial

Note. In this section we define a left-handed and a right-handed crossing in an

oriented knot diagram. These crossings and a labeling of the arcs are used to create

a matrix which is modified and then used to compute the Alexander polynomial

using determinants. We give some examples.

Note 3.5.A. We now describe how to compute the Alexander polynomial of a knot,

AK(t). First, pick an oriented diagram for K, number the arcs, and separately

number the crossings. Next, define an n × n matrix where n is the number of

crossings (and the number of arcs) in the diagram. We use Figure 3.15 to define

a right-handed and left-handed crossing. In Figure 3.15(a), if we curl the fingers

of our right hand (with thumb pointed out of the page) from the arrow end of the

overcrossing arc then our fingers first encounter the arrow end of the undercrossing

arc; this is a left-handed crossing. In Figure 3.15(b), if we curl the fingers of our left

hand (with thumb pointed out of the page) from the arrow end of the overcrossing

arc then out fingers first encounter the arrow end of the undercrossing arc; this is

a right-handed crossing. See Exercise 3.2.5 also.
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If crossing number ` is right-handed, then enter a 1− t in column i of row `, enter a

−1 in column j of row `, and enter a t in column k of row `. If crossing number ` is

left-handed, then enter a 1− t in column i of row `, enter a t in column j of row `,

and enter a −1 in column k of row `. All the remaining entries of row ` are 0. In the

case that any of i, j, or k are equal, the sum of the entries described above are put in

the appropriate column. For example, if j = k for some right-handed (left-handed)

crossing, then enter (−1) + (t) = t− 1 (respectively, (t) + (−1) = t− 1) in column

j = k of row `; if i = j = k, then enter (1− t)+(−1)+(t) = (1− t)+(t)+(−1) = 0

in the i = j = k column of row `

Definition. The (n− 1)× (n− 1) matrix obtained by removing the last row and

column from the n × n matrix of Note 3.5.A is an Alexander matrix of K. The

determinant of the Alexander matrix is the Alexander polynomial of K. We take

the determinant of a 0× 0 matrix to be 1, so that the Alexander polynomial of the

unknot is 1.

Note. The Alexander polynomial depends on the choice of the diagram for the

knot, the choice of the orientation, the choices of the labeling of the crossings, and

the choices of the labels of the arcs. However, we can relate the different Alexander

polynomials that result as given in the following theorem.

Theorem 3.5.6. If the Alexander polynomial for a knot is computed using two

different sets of choices for diagrams and labelings, the two polynomials will differ

by a multiple of ±tk, for some k ∈ Z.
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Note 3.5.B. Notice that by Theorem 3.5.6, there is not a unique Alexander poly-

nomial of a given knot. However, when we say “the Alexander polynomial” of a

knot, we refer to the polynomial of minimum degree and positive leading coeffi-

cient; these are the polynomials given in Appendix 1. Livingston gives a “Sketch

of Proof” of Theorem 3.5.6, but we accept it as given.

Example 3.5.1. Consider the diagram of the trefoil knot of Figure 3.16 with the

given orientation and labelings (the arcs are labeled with subscripted x’s, but we

interpret the labels as the subscripts).

We number the crossings from top to bottom as 1, 2, 3. Notice that crossing ` = 1

is a right-hand crossing with i = 1, j = 2, and k = 3 (compare to Figure 3.15(a)).

So we take the entries in row ` = 1 as 1− t in column i = 1, −1 in column j = 2,

and t in column k = 3. Crossing ` = 2 is a right-hand crossing with i = 2, j = 3,

and k = 1 (compare to Figure 3.15(a)). So we take the entries of row ` = 2 as

1 − t in column i = 2, −1 in column j = 3, and t in column k = 1. Crossing

` = 3 is a right-hand crossing with i = 3, j = 1, and k = 2 (compare to Figure

3.15(a)). So we take the entries of row ` = 3 as 1− t in column i = 3, −1 in column

j = 1, and t in column k = 2. The n × n = 3 × 3 matrix of Note 3.5.A and the
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(n− 1)× (n− 1) = 2× 2 Alexander matrix are:
1− t −1 t

t 1− t −1

−1 t 1− t

 and

 1− t −1

t 1− t

 .

So the Alexander polynomial is

det

 1− t −1

t 1− t

 = (1− t)2 − (−t) = 1− 2t + t2 + t = t2 − t + 1.

Example 3.5.2. Consider the diagram of the knot 41 shown here with the given

orientation and labelings (the arcs are labeled with subscripted x’s, but we interpret

the labels as the subscripts).

We number the crossings as 1 (upper-most), 2 (middle), 3 (lower left), and 4 (lower

right). Notice that crossing ` = 1 is a right-hand crossing with i = 1, j = 2, and

k = 3 (compare to Figure 3.15(a)). So we take the entries in row ` = 1 as 1 − t

in column i = 1, −1 in column j = 2, and t in column k = 3. Crossing ` = 2 is a

right-hand crossing with i = 2, j = 1, and k = 4 (compare to Figure 3.15(b)). So

we take the entries of row ` = 2 as 1− t in column i = 2, −1 in column j = 1, and

t in column k = 4. Crossing ` = 3 is a left-hand crossing (arguably) with i = 4,
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j = 3, and k = 1 (compare to Figure 3.15(b)). So we take the entries of row ` = 3

as 1 − t in column i = 4, t in column j = 3, and −1 in column k = 1. Crossing

` = 4 is a left-hand crossing with i = 3, j = 4, and k = 2 (compare to Figure

3.15(b)). So we take the entries of row ` = 4 as 1− t in column i = 3, t in column

j = 4, and −1 in column k = 2. The n× n = 4× 4 matrix of Note 3.5.A and the

(n− 1)× (n− 1) = 3× 3 Alexander matrix are:
1− t −1 t 0

−1 1− t 0 t

−1 0 t 1− t

0 −1 1− t t

 and


1− t −1 t

−1 1− t 0

−1 0 t

 .

Using the cofactor expansion for determinants, we have “an” Alexander polynomial

det


1− t −1 t

−1 1− t 0

−1 0 t

 = (1− t)det

 1− t 0

0 t



−(−1)det

 −1 t

0 t

 + (−1)det

 −1 t

1− t 0


= (1− t)(1− t)(t)− (−1)(−1)(t) + (−1)(−t)(1− t) = (t− 2t2 + t3)− (t) + (t− t2)

= t3 − 3t2 + t = t(t2 − 3t + 1).

Ignoring the factor of t as described in Notes 3.5.B, we get “the” Alexander poly-

nomial of knot K = 41 as AK(t) = t2 − 3t + 1, in agreement with Appendix 2.

Note. We’ll see in Chapter 6, “Geometry, Algebra, and the Alexander Polyno-

mial,” that the Alexander polynomial is symmetric (see Corollary 6.2.2 and Ap-
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pendix 2 which lists the Alexander polynomials for the knots of Appendix 1); that

is, for a given knot K, AK(t) =
∑n

i=0 ait
i where ai = an−i so that the coefficients

are symmetric (not to be confused with a “symmetric function” which you may

encounter in algebra; see my online notes for Introduction to Modern Algebra 2 on

Section X.54. Illustrations of Galois Theory). Though the Alexander polynomial

is not strictly speaking a knot invariant (see Theorem 3.5.6 and Note 3.5.B), we

can conclude that if two knots have Alexander polynomials that do not differ by a

multiple of ±tk for some k ∈ Z then the knots are not equivalent. Livingston claims

that the Alexander polynomial of the (2, n)-torus knot is (tn + 1)/(t + 1). These

polynomials differ for each n so that we have an infinite collection of nonequivalent

knots in the collection of (2, n)-torus knots.
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