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Chapter 5. Algebraic Techniques

Section 5.1. Symmetric Groups

Note. In this section we define a “group” in general, but concentrate on the

symmetry groups Sn. For our applications to knot theory, we only need an intro-

duction to symmetry groups. As a warning, when using the cycle notation in Sn

we multiply cycles by reading left-to-right, instead of the standard right-to-left

way of multiplying cycles encountered in Introduction to Modern Algebra (MATH

4127/5127).

Definition. A permutation on a set T is a one-to-one function (i.e., a bijection)

from set T to itself.

Note. If f and g are permutations on set T , then the composition f ◦ g (defined

here as f ◦ g(i) = g(f(i))) is also a permutation on set T . This follows from the

fact that a composition of bijections is again a bijection; see Theorem 1-2 in my

online notes for Analysis 1 (MATH 4217/5217) on Section 1.1. Sets and Functions.

Notice that the composition of two functions is reversed from the usual definition.

This “is fairly standard in knot theory” according to Livingston (see page 84). We

will only deal with permutations on finite sets and will introduce a notation next

that will differ from the notation you likely saw in your Introduction to Modern

Algebra (MATH 4127/5127) class.

https://faculty.etsu.edu/gardnerr/4217/notes/1-1.pdf


5.1. Symmetric Groups 2

Definition. For T = {1, 2, , . . . , n}, the set Sn of all permutations on set T is

called the symmetric group on n symbols, denoted Sn.

Note. Recall from Introduction to Modern Algebra (MATH 4127/5127) that a

group G is set of elements with a binary operation ∗ (a mapping of G×G into G;

we denote the element of G associated with (a, b) ∈ G under ∗ as a ∗ b) such that

(1) for all a, b, c ∈ G we have (a ∗ b) ∗ c = a ∗ (b ∗ c) (associativity of ∗), (2) there

is e ∈ G such that e ∗ a = a ∗ e = a for all a ∈ G (e is an identity in G), and (3)

for all a ∈ G, there is a′ ∈ G such that a ∗ a′ = a′ ∗ a = e (a′ is an inverse of a). So

Sn is in fact a group where the binary operation is function composition (function

composition is associative giving property (1); properties (2) and (3) are clear).

Note. Livingston concentrates on set S5 of all permutations on the set {1, 2, 3, 4, 5}.

Notice that there are 5! = 120 permutations on these symbols. One of these is the

function f such that f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 5, and f(5) = 1; we

denote this permutation in cyclic notation as (1, 2, 3, 4, 5). This is a “5-cycle” and

its “length” is 5.

Note. The permutation g ∈ S5 such that g(1) = 3, g(3) = 2, g(2) = 1, g(4) = 5,

and g(5) = 4 can be written as a “product” of two cycles as (1, 3, 2)(4, 5) (this is

Example 5.1.3). More generally, we multiply cycles by reading left-to-right (in

contrast to the way you likely dealt with cycle multiplication in Introduction to

Modern Algebra; see my online notes on Section II.8. Groups of Permutations for

https://faculty.etsu.edu/gardnerr/4127/notes/II-8.pdf
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more information on permutation groups in general, and see Section II.9. Orbits,

Cycles, and the Alternating Groups for more on the cycle notation). So if we

consider the product (1, 3, 2)(2, 3)(1, 5, 4), then (reading from left-to-right) we have

that the first cycle maps 1 to 3, and then the second cycle maps 3 to 2, so that

the product maps 1 to 2. For 2, the first cycle maps 2 to 1, and then the third

cycle maps 1 to 5, so that the product maps 2 to 5. Similarly, 3 is mapped to 2 by

the first cycle, and 2 is mapped to 3 by the third cycle, so that the product maps

3 to 3. Element 4 is only present in the third cycle where it is mapped to 1, and

element 5 is only present in the third cycle where it is mapped to 4. Therefore,

the product can be written as (1, 3, 2)(2, 3)(1, 5, 4) = (1, 2, 5, 4)(3). Notice that

the two cycles (1, 2, 5, 4) and (3) are disjoint. It is also standard to exclude the

cycles of length one so that we might write (1, 3, 2)(2, 3)(1, 5, 4) = (1, 2, 5, 4) (this

is Example 5.1.4). Example 5.1.5 claims

(1, 3, 4)(1, 4, 5)(2, 3)(1, 3, 2, 5, 4)(1, 4)(2, 5, 3) = (1, 3)(2, 5).

You should convince yourself that this is correct.

Definition. A set of permutations {g1, g2, . . . , gk} generates the symmetric group

if every element in the group can be written as a product of elements from the

set, with possible repetitions and use of their inverses. A transposition is a cycle of

length 2.

Note. In Exercise 5.1.7(d) it it to be shown that the set of transpositions {(1, 2),

(2, 3), (3, 4), (4, 5), . . . , (n− 1, n)} are a generating set of the symmetric group Sn.

https://faculty.etsu.edu/gardnerr/4127/notes/II-9.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/II-9.pdf
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Note. For what follows, we do not need to explore group theory in great depth

and we will get by just with a bit of knowledge of the symmetric groups Sn. We will

have results that hold for general groups, but examples will be based on symmetric

groups.
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