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Chapter 6. Geometry, Algebra, and the

Alexander Polynomial

Note. In Section 3.5 we defined the Alexander polynomial and the Alexander

matrix of a knot. In this chapter we give algebraic and geometric approaches to

Alexander polynomial. The geometric approach involves the Seifert matrix, to be

introduced in Section 6.1.

Section 6.1. The Seifert Matrix

Note. In this section, we define the linking number of an oriented link with two

components. We consider closed oriented paths on a Seifert surface and use the idea

of the linking number to define a matrix, called the Seifert matrix. We illustrate it

with an example. Most of the definitions of this section are rather informal.

Note. In Figure 6.1 we have a disk to which has been added four bands. Notice

that oriented closed curves appear on the surface which run from the disk, along

the “core” of a band, and back to the disk. If the surface is a Seifert surface of a

knot, then the twisting and linking of these curves contain information about the

knot. We encode such information in the Seifert matrix below.
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Definition. Consider a diagram of an oriented link with two components, K and

J . With each crossing in the diagram, associate the number +1 is the crossing

is right-handed and associate the number −1 if the crossing is left-handed (where

left-handed and right-handed crossing are as described in Figure 5.1 of Section 5.2;

see also Figure 3.7 in Exercise 3.2.5). These values are the signs of the crossing.

The linking number of K and J , denoted `k(K, J), is the sum of the signs of the

crossing points where K and J meet, divided by 2.

Note. In Exercise 3.2.5 (where the definition of linking number first appears), it

is to be shown that the the linking number depends only on the oriented knot and

not on the diagram used to compute it. That is, the linking number is an (oriented

knot) invariant. Notice that the roles of K and J are interchangeable, so that

`(K, J) = `(J, K).
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Note. For a given knot K and Seifert surface F of the knot, we know by definition

that F is an orientable surface. So, informally, it has “one side” which we can label

the “top” of the surface. More formally, this is dealt with in terms of nonvanishing

normal vectors to the surface (which always point “up”).

“Definition.” Let K be a given knot K and let F be a Seifert surface of K.

Choose a side of surface F as the top side. For any given simple oriented closed

curve x on F , a positive push off of x, denoted x∗, which runs “parallel” to x and

lies just “above” F .

Note. We need the idea of a positive push off so that we can consider crossings

between two paths on the Seifert surface. So we can compute the linking number

between a oriented closed curve x on F and the positive push off y∗ of another

oriented closed curve on F . We need the curves on F to intersect only at isolated

points of F and when two curves intersect we need them to cross (as opposed to

being tangent).

Note 6.1.A. By Theorem 4.2.3, if a connected orientable surface is formed by

attaching bands to a collection of disks then the genus of the resulting surface is

(2−#disks + #bands−#boundary components)/2.

So if F is a Seifert surface of a knot, then it has only one boundary component

and if it is formed by adding bands to a single disk, then the genus is (2 − (1) +

#bands − (1))/2 = #bands/2, so that the number of bands is twice the genus.
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Since each band will have a simple oriented closed curve associated with it, the

the number of curves is twice the number of bands. For example, in Figure 6.1 we

started with a single disk and added 4 bands, so that the genus of the surface is 2

and the number of simple oriented closed curves is 4.

Definition. Let F be a Seifert surface of a knot K that is formed from a single

disk by adding bands. If F is genus g then 2g bands are present (as described in

Note 6.1.A above) and so there are 2g simple oriented closed curves x1, x2, . . . , x2g

associated with surface F . The Seifert matrix V of surface F is the 2g× 2g matrix

with (i, j)-entry of vi,j = `k(xi, x
∗
j).

Note. The Seifert matrix depends on a number of choices (such as the orientations

of the curves and the choice of the “top” side of F ) and, as Livingston claims on

page 112, “by itself is not an invariant of the knot.” In Sections 6.2 and 6.3

we will use the Seifert matrix to define knot invariants, including the Alexander

polynomial.

Example. We now consider the Seifert matrix of the Seifert surface given in Figure

6.1 above. We interpret the top of the surface to be the part contained in the disk

which faces us in Figure 6.1. In Figure 6.2, we have the curves x2 and x∗3. Notice

that the “twisting” of the band which contains x2 is lost in path x2 (since x2 is at

the “core” or center of the band, say), but the knottedness of this band is reflected

in Figure 6.2, and similarly for the band containing x3; the crossings generated by
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x∗3 and are also reflected in Figure 6.2.

Both crossings are right-handed, so the linking number is `k(x2, x
∗
3) = ((+1) +

(+1))/2 = 1. So in the Seifert matrix, v2,3 = 1. Figure 6.3 gives the curves x2 and

x∗2 (the book’s version is modified here to give x∗2 as the blue curve). Notice that

the twisting of the band containing path x2 has an influence this time because it

causes x∗2 to wrap around x2 twice (you might follow one of the boundaries of the

band to convince yourself of this). The knottedness of the band is reflected here,

similar to the case given in Figure 6.2.

There are 10 crossings of x2 and x∗2 (follow the blue curve and see how many times

it crosses the black curve), and all 10 are left-handed. So the linking number is

`k(x2, x
∗
2) = (10× (−1))/2 = −5. So in the Seifert matrix, v2,2 = −5. As described

in Note 6.1.A, the genus of the Seifert surface is 2, so that the Seifert matrix is
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4 × 4. The other entries of the matrix are to be found in Exercise 6.1.2. We find

that the Seifert matrix for the surface of Figure 6.1 is

V =


2 1 0 0

0 −5 1 0

0 1 2 −1

0 0 −2 −2

 .

(Notice that the (2, 1)-entry of V as given in the book is incorrect. When we

consider x2 and x∗1 there are two crossings; one is left-handed and one is right-

handed. So v2,1 = `k(x2, x
∗
1) = 0.)
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