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Section 6.2. Seifert Matrices and

the Alexander Polynomial

Note. In this section, we state (without proof) a theorem that relates the Alexan-

der polynomial to the Seifert matrix.

Note. Livingston declares a proof of the next result to be “not at all evident” (see

page 115). It seems that in some sources, this is the definition of the Alexander

polynomial; see the bottom of page 55 of W. B. Raymond Lickorish’s An Introduc-

tion to Knot Theory, Graduate Texts in Mathematics #175, NY: Springer (1997).

When we refer to “the” Alexander polynomial, remember that we need a standard

version of an Alexander polynomial, as explained in Note 3.5.B.

Theorem 6.2.1. Let V be a Seifert matrix for a knot K, and V t is transpose.

The Alexander polynomial is given by the determinant det(V − tV t). If K has a

genus g Seifert surface, then V is 2g×2g (by definition), so an upper bound on the

degree of the Alexander polynomial is 2g.

Note. Using the properties of determinants, we can easily prove the following.

Corollary 6.2.2. The Alexander polynomial of a knot K satisfies AK(t) =

t±iAK(t−1) for some i ∈ Z.
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Example. In the previous section we saw that the Seifert matrix of the knot of

Figure 6.1 is (remember that there is an error in the book’s version of this matrix):

V =


2 1 0 0

0 −5 1 0

0 1 2 −1

0 0 −2 −2

 .

So we have by Theorem 6.2.1, the Alexander polynomial of this knot is

det(V − tV t) = det




2 1 0 0

0 −5 1 0

0 1 2 −1

0 0 −2 −2

− t


2 0 0 0

1 −5 1 0

0 1 2 −2

0 0 −1 −2





= det


2− 2t 1 0 0

−t −5 + 5t 1− t 0

0 1− t 2− 2t −1 + 2t

0 0 −2 + t −2 + 2t

 = 64t2 − 272t3 + 217t2 − 272t + 64.

Definition. For a Seifert Surface which is a disk with bands added, a band move

results from sliding one of the points at which a band is attached over another

band.

Note 6.2.A. The following figure gives an example of a band move. A band move

results in another surface that is a disk with bands attached. The 2g curves formed

from the cores of the new bands will be different from the cores of the original bands
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and will interact in a different way, hence changing the Seifert matrix. Livingston

claims without proof that the effect of a band move on the Seifert matrix V is, for

some i and j, to add a multiple of the ith row to the j row and then to add the same

multiple of the ith column to the jth column. Now each elementary row operation

can be performed by multiplying on the left by an appropriate elementary matrix

(see my online notes for Linear Algebra [MATH 2010] on 1.4. Solving Systems of

Linear Equations; see Theorem 1.8). Also, each elementary column operation can

be performed by multiplying on the right be an appropriate elementary matrix (see

my online notes for Theory of Matrices [MATH 5090] on Section 3.2. Multiplication

of Matrices and Multiplication of Vectors and Matrices; see Theorem 3.2.3). Since

the same same operation is applied to the rows as the columns, then a sequence

of band moves results in changing the Seifert matrix V to the matrix MV M t

where M is some invertible matrix with integer entries (M and M t are products of

the elementary matrices representing the sequence of elementary row and column

operations).

Definition. For a Seifert Surface which is a disk with bands added, when two

bands are added to the disk such that (1) one band is untwisted and unknotted,

and (2) the other band may be twisted or knotted and can link with the other

bands, then this procedure is called stabilization.

https://faculty.etsu.edu/gardnerr/2010/c1s4.pdf
https://faculty.etsu.edu/gardnerr/2010/c1s4.pdf
https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-2.pdf
https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-2.pdf
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Note. Figure 6.7 illustrates the stabilization procedure. Livingston claims that

the boundary of the new surface after stabilization is “clearly” the same knot as the

original Seifert surface, and that the Seifert matrix of the new surface results from

the original Seifert matrix V with two new columns and rows added as follows:

∗ 0

V
...

...

∗ 0

∗ · · · ∗ ∗ 1

0 · · · 0 0 0


.

Definition. Two matrices with integer entries are S-equivalent if they differ by

a sequence of the two operations given above associated the Seifert matrix corre-

sponding to bond moves and stabilization (or their inverses).
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Note. Livingston claims that a “difficult geometric argument” shows that for any

two Seifert surfaces for a knot, there is a sequence of stabilizations that be be

applied to each so that the resulting surfaces can be deformed into each other. The

next result summarizes this in terms of the Seifert matrices.

Theorem 6.2.3. Any two Seifert matrices for a knot are S-equivalent.

Note. The next result is easy to prove using properties of determinants.

Corollary 6.2.4. If V1 and V2 are Seifert matrices associated with the same knot,

then the polynomials det(V1 − tV t
1 ) and det(V2 − tV t

2 ) differ by a multiple of ±tk.
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