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Section 6.3. Signature of a Knot, and

Other S-equivalent Invariants

Note. In this section, we give some knot invariants that are determined by a

Seifert matrix of a knot.

Note 6.3.A. In the proof of Corollary 6.2.4 we saw that if V ′ results from V

by a single step of stabilization, the det(V ′ − t(V ′)t) = tdet(V − tV t). So for V

a Seifert matrix of a knot, the determinant of the symmetric matrix V + V t is

changed by a negative sign by stabilization (take t = −1 in the above equality).

Now a band move has the effect of multiplying V by an elementary matrix M

of determinant 1 to give MV M t. Since det(MV M t) = det(M)det(V )det(M t) =

det(M)det(V )det(M) = (1)(det(V ))(1) = det(V ), the second manipulation of the

Seifert matrix does not change the determinant. So if two matrices V1 and V2 are

S-equivalent then the determinants of V1 + V t
1 and V2 + V t

2 differ at most by a

multiple of −1. So for V a Seifert matrix of a knot, the quantity |det(V + V t)| is a

knot invariant. Livingston claims that this invariant is the same as the determinant

of a knot defined in Section 3.4 and that it is the absolute value of the Alexander

polynomial evaluated at t = −1 (see page 119).

Definition. Every real symmetric matrix A is diagonalizable; the diagonalization

A = CDC−1 can be achieved by using a real orthogonal matrix C (see my online

notes for Linear Algebra [MATH 2010] on 6.3 Orthogonal Matrices; see Theorem

6.8. Fundamental Theorem of Real Symmetric Matrices). The signature of matrix

https://faculty.etsu.edu/gardnerr/2010/c6s3.pdf
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A is the number of positive entries minus the number of negative entries on the

diagonal. For a Seifert matrix V of a knot K, the matrix V + V t is symmetric and

its signature is the signature of knot K, denoted σ(K).

Note. W. B. Raymond Lickorish, in An Introduction Knot Theory, Graduate

Texts in Mathematics 175, (NY: Springer-Verlag, 1997) “Chapter 8 The Conway

Polynomial, Signatures and Slice Knots,” give a definition of the signature of a

knot and give the signature of all knots with less than eight crossings (see Table

8.1 on his page 85).

Example. We saw in Section 6.1 that a Seifert matrix for the graph of Figure 6.1

is

V =


2 1 0 0

0 −5 1 0

0 1 2 −1

0 0 −2 −2


(with the (2, 1)-entry corrected, as explained in the notes for Section 6.1). So the

matrix

A1 = V + V t =


4 1 0 0

1 −10 2 0

0 2 4 −3

0 0 −3 −4


is symmetric. Livingston considers this matrix in this section, but unfortunately

drops a negative sign in the (2, 2)-entry (and then does computation based on the

https://faculty.etsu.edu/gardnerr/Knot-Theory/Notes-Livingston/Livingston-Knot-6-1.pdf
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incorrect entry). We can add −1/4 times the first row to the second row and then

add −1/4 times the first column to the second column to get

A =


4 1 0 0

1 −10 2 0

0 2 4 −3

0 0 −3 −4

 ∼


4 0 0 0

0 −41/4 0 0

0 0 4 −3

0 0 −3 −4

 = B.

In Exercise 6.3.1, it is to be shown that continuing this process we find that

A =


4 1 0 0

1 −10 2 0

0 2 4 −3

0 0 −3 −4

 ∼


4 0 0 0

0 −41/4 0 0

0 0 180/41 0

0 0 0 −121/20

 = B,

where the row equivalence is accomplished by a sequence row additions and cor-

responding column additions (so that B = MAM t where det(M) = 1). Again,

notice the discrepancy with Livingston (see his page 120). Since there are 2 pos-

itive entries and 2 negative entries on the diagonal, the signature of this matrix

is 2 − 2 = 0. Therefore, for knot K in Figure 6.1 we have σ(K) = 0 (since the

signature of A and B are the same, as shown in the next note).

Note 6.3.B. “Sylvester’s Law of Inertia” is named for James J. Sylvester, Septem-

ber 3, 1814–March 15, 1897, who published the result in “A demonstration of

the theorem that every homogeneous quadratic polynomial is reducible by real

orthogonal substitutions to the form of a sum of positive and negative squares”

Philosophical Magazine, 4th Series. 4(23), 138142 (1852); an online copy is avail-

able at Andrew Ranicki webpage (accessed 2/27/2021). The result implies that if

https://www.maths.ed.ac.uk/~v1ranick/sylv/inertia.pdf
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B is a symmetric matrix given by B = MAM t, where M is invertible, then the

signatures of A and B are equal.

Theorem 6.3.5. For a knot K, the value of σ(K) does not depend on the choice

of Seifert matrix, and is hence a well-define knot invariant.

Example 6.3.A. In Exercise 6.1.1, it was to be shown that a Seifert matrix of the

right-handed trefoil knot is V =

 −1 −1

0 −1

. So we have V +V t =

 −2 −1

−1 −2

.

By adding −1/2 times the first row to the second row and then −1/2 times the

first column to the second column we get

V + V t =

 −2 −1

−1 −2

 ∼

 −2 0

0 −3/2

 .

So the signature of the right-handed trefoil knot is −2. We can similarly show

that the left-handed trefoil knot has signature +2, so that by Theorem 6.3.5, the

left-handed and right-handed trefoil knots are not equivalent.

Note. Recall that a square matrix H with complex entries is Hermitian if it equals

its conjugate transpose (denoted H∗), H = H∗. See my online notes for Linear

Algebra (MATH 2010) on 9.2. Matrices and Vector Spaces with Complex Scalars

(see Definition 9.4). Any Hermitian matrix can be diagonalized by performing a

sequence of row and column operations. The difference in the complex setting

from the real setting is that the of a row operation involving multiplication be

complex number z is followed by a column operation related to multiplying the

https://faculty.etsu.edu/gardnerr/2010/c9s2.pdf
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column by the complex conjugate z. Once diagnonalized, the matrix will have

real entries (it diagonal matrix will also be Hermitian and the diagonal entries of

all Hermitian matrices must be real). The signature can then be computed as in

the real case. For some theoretical support for these claims, see my online Linear

Algebra notes on 9.3. Eigenvalues and Diagonalization; in particular, see “Theorem

9.5. The Spectral Theorem for Hermitian Matrices.” These notes are part of the

study of linear algebra, but are not usually covered in the sophomore class because

of time constraints.

Note. As with Sylvester’s Law of Inertia for real symmetric matrices, a similar

result holds for complex Hermitian matrices. This allows us to use complex numbers

to define an additional type of signature for a knot, as follows.

Definition. Let V be the Seifert matrix for a knot K and let ω be a complex

number of modulus 1, |ω| = 1. Consider the Hermitian matrix (1 − ω)V + (1 −

ω−1)V t. The signature of this matrix is the ω-signature of K. Interpreting ω ∈

{z | z ∈ C, |z| = 1} as a variable, for a given knot K we can define the signature

function of K on the unit circle in C; we have the mapping ω 7→ ω-signature of K.
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