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Section 6.4. Knot Groups and the Alexander Polynomial

Note. In this section, we present an algorithm that computes the Alexander

polynomial of a knot based on the group presentation of the knot group as discussed

in Section 5.4. Equations in Groups and the Group of a Knot.

Note. The algorithm we present was developed by Ralph Fox in five papers in the

1950s:

1. Fox, R., “Free Differential Calculus, I: Derivation in the Free Group Ring,”

Annals of Mathematics, 57(3), 547-560 (1953).

2. Fox, R., “Free Differential Calculus, II: The Isomorphism Problem of Groups,”

Annals of Mathematics, 59(2), 196-210 (1954).

3. Fox, R., “Free Differential Calculus, III: Subgroups,” Annals of Mathematics,

64(2), 407-419 (1956).

4. Chen, K-T, R. Fox, and R. Lyndon, “Free Differential Calculus, IV: The Quo-

tient Groups of the Lower Central Series,” Annals of Mathematics 68(1), 81-95

(1958).

5. Fox, R., “Free Differential Calculus, V: The Alexander Matrices Re-Examined,”

Annals of Mathematics, 71(3), 408-422 (1960).

“Free differential calculus” is today known as “Fox calculus.” Another source on

this by Fox is in Richard Crowell and Ralph Fox, Introduction to Knot Theory, NY:

Springer Verlag (1963); see “Chapter VII. The Free Calculus and the Elementary

Ideals” (pages 94–109).

https://faculty.etsu.edu/gardnerr/Knot-Theory/Notes-Livingston/Livingston-Knot-5-4.pdf
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Definition. Let x1, x2, . . . , xn be noncommuting variables. A word in these vari-

ables is a monomial in these variables (i.e., a product of powers of the variables).

The Fox derivative, ∂/∂xi, on these words satisfies the rules:

Rule 1.
∂

∂xi
[xi] = 1,

∂

∂xi
[xj] = 0 for i 6= j, and

∂

∂xi
[1] = 0.

Rule 2.
∂

∂xi
[wz] =

∂

∂xi
[w]+w

∂

∂xi
[z], where w and z are words in variables xj and

x−1
j .

Note. By Rule 1,
∂

∂xi
[xix

−1
i ] =

∂

∂xi
[1] = 0, and by Rule 2,

∂

∂xi
[xix

−1
i ] =

∂

∂xi
[x1] + xi

∂

∂xi
[x−1

i ] = 1 + xi
∂

∂xi
[x−1

i ].

Therefore,
∂

∂xi
[x−1

i ] = −x−1.

Example 6.4.A. Let x1 = x and x2 = y. Consider the word xyxy−1x−1y−1. We

can repeatedly apply Rule 2 to differentiate the word with respect to x and with

respect to y. Differentiating with respect to x we have

∂

∂x
[xyxy−1x−1y−1] =

∂

∂x
[(x)(yxy−1x−1y−1)] =

∂

∂x
[x] + x

∂

∂x
[yxy−1x−1y−1]

= 1 + x
∂

∂x
[(y)(xy−1x−1y−1)] = 1 + x

(
∂

∂x
[y] + y

∂

∂x
[xy−1x−1y−1]

)
= 1 + x(0) + xy

∂

∂x
[(x)(y−1x−1y−1)] = 1 + xy

(
∂

∂x
[x] + x

∂

∂x
[y−1x−1y−1]

)
= 1 + xy(1) + xyx

∂

∂x
[(y−1)(x−1y−1)] = 1 + xy + xyx

(
∂

∂x
[y−1] + y−1 ∂

∂x
[x−1y−1]

)
= 1 + xy + xyx(0) + xyxy−1 ∂

∂x
[x−1y−1] = 1 + xy + xyxy−1 ∂

∂x
[x−1y−1]
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= 1 + xy + xyxy−1
(

∂

∂x
[x−1] + x−1 ∂

∂x
[y−1]

)
= 1 + xy + xyxy−1(−x−1 + x−1(0))

= 1 + xy − xyxy−1x−1.

Differentiating with respect to y we have

∂

∂y
[xyxy−1x−1y−1] =

∂

∂y
[(x)(yxy−1x−1y−1)] =

∂

∂y
[x] + x

∂

∂y
[yxy−1x−1y−1]

= 0 + x
∂

∂y
[(y)(xy−1x−1y−1)] = x

(
∂

∂y
[y] + y

∂

∂y
[xy−1x−1y−1]

)
= x(1) + xy

∂

∂y
[(x)(y−1x−1y−1)] = x + xy

(
∂

∂y
[x] + x

∂

∂y
[y−1x−1y−1]

)
= x + xy(0) + xyx

∂

∂y
[(y−1)(x−1y−1)] = x + xyx

(
∂

∂y
[y−1] + y−1 ∂

∂y
[x−1y−1]

)
= x+xyx(−y−1)+xyxy−1 ∂

∂y
[x−1y−1] = x−xyxy−1+xyxy−1

(
∂

∂y
[x−1] + x−1 ∂

∂y
[y−1]

)
= x− xyxy−1 + xyxy−1((0) + x−1(−y−1)) = x− xyxy−1 − xyxy−1x−1y−1.

Note. In Example 5.4.B we saw that a presentation of the group of the trefoil knot

is 〈x, y | xyxy−1x−1y−1〉. In Example 3.5.1 we saw that the Alexander polynomial

of the trefoil knot is t2 − t + 1. Notice that if we x = y = t in

∂

∂x
[xyxy−1x−1y−1] = 1 + xy − xyxy−1x−1

then we get

(1 + xy − xyxy−1x−1)|x=y=t = 1 + (t)(t)− (t)(t)(t)−1(t)−1 = 1 + t2 − t = t2 − t + 1.

If we x = y = t in

∂

∂t
[xyxy−1x−1y−1] = x− xyxy−1 − xyxy−1x−1y−1
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then we get

x− xyxy−1 − xyxy−1x−1y−1|x=y=t = (t) − (t)(t)(t)(t)−1 − (t)(t)(t)(t)−1(t)−1(t)−1

= t− t2 − 1 = −t2 + t− 1 = −(t2 − t + 1).

In light of Theorem 3.5.6 (which state that Alexander polynomials for a knot com-

puted in different ways will differ by a multiple of ±tk for some k ∈ Z), we see that

these two versions of the Alexander polynomial fot the trefoil knot are consistent..

Livingston describes these observations as “a hint of things to come” in this section

(see page 125).

Definition. For ~f : Rn → Rm a vector valued function with differentiable compo-

nents ~f = [f1, f2, . . . , fm], the Jacobian matrix of ~f is the m× n matrix

J =



∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn

...
... . . . ...

∂fm

∂x1

∂fm

∂x2
· · · ∂fm

∂xn

 .

Note. The Jacobian matrix is used in multi-variable calculus when making a

change of variables in a multiple integral; it plays the role of “du” in the change of

variables. See my online notes for Calculus 3 (MATH 2110) on 15.8. Substitutions in

Multiple Integrals. We use it now to give an algorithm for computing the Alexander

polynomial, but with “regular” differentiation replaced with the Fox derivative.

https://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf
https://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf
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Note 6.4.A. We claim that we can compute the Alexander polynomial of a knot

with the following algorithm, which we call “Fox’s Algorithm.”

Step 1. Take any presentation of the group of the knot, as described in Section

5.4. Equations in Groups and the Group of a Knot. The presentation will

have one more generator than relation.

Step 2. Form the Jacobian matrix using the Fox derivative of the equations in the

presentation.

Step 3. Eliminate any one of the columns of the Jacobian matrix (resulting in a

square matrix).

Step 4. Substitute t for all the variables in the Jacobian matrix.

Step 5. Take the determinant of the resulting matrix and this will give the Alexan-

der polynomial.

Example 6.4.B. We apply Fox’s Algorithm to the trefoil knot. For Step 1, the

trefoil knot has knot group G with presentation 〈x, y | xyxy−1x−1y−1〉, as seen in

Example 5.4.B. For Step 2, we have the Jacobian matrix (using the computations

of Example 6.4.A above)

J =
(

∂
∂x [xyxy−1x−1y−1] ∂

∂y [xyxy−1x−1y−1]
)

=
(

1 + xy − xyxy−1x−1 x− xyxy−1 − xyxy−1x−1y−1
)

.

For Step 3, we eliminate one of the columns of J (the second column here) to get:

J =
(

∂
∂x [xyxy−1x−1y−1]

)
=

(
1 + xy − xyxy−1x−1

)
.

https://faculty.etsu.edu/gardnerr/Knot-Theory/Notes-Livingston/Livingston-Knot-5-4.pdf
https://faculty.etsu.edu/gardnerr/Knot-Theory/Notes-Livingston/Livingston-Knot-5-4.pdf


6.4. Knot Groups and the Alexander Polynomial 6

For Step 4, we set x = y = t to get the matrix
(

t2 − t + 1
)

. For Step 5, the

determinant (since we have just a 1 × 1 matrix) is det
(

t2 − t + 1
)

= t2 − t + 1,

in agreement with Example 3.5.1 (and Appendix 2).

Example 6.4.C. In Section 5.4. Equations in Groups and the Group of a Knot

we saw that the arcs of the knot of Figure 5.8 can be labeled with group elements

as given in Figure 5.8, where the following relations must hold (using the notation

we introduced in that section):

yx−1zxy−1xyx−1z−1xy−1xy−1x−1 = 1, (R1)

yx−1y−1zyxy−1z−1yzyx−1y−1z−1yxy−1xy−1x−1yx−1z−1xy−1xyx−1 = 1, (R2)

(z−1y−1zyxy−1z−1yz)yx−1y−1z−1yxy−1 = 1 (R3′)

However, by Note 5.4.A we see that we only need two of the relations in order to

determine the group of the knot. So we use relations (R1) and (R3′) (since (R2)

would yield a lengthier computation for the Fox derivative). If we calculate the

2×3 Jacobian matrix and then delete on column (say the column corresponding to

partials with respect to y, then set x = z = t we find that we get the 2× 2 matrix

A(t) =

 −t4 + t− 2 −t + 1

−t + 2 1− 3t−1 + t−2


as is to be verified in Exercise 6.4.3. So by Fox’s Algorithm, the Alexander poly-

nomial is AK(t) = det(A(t)) = −2t2 + 10t− 15 + 10t−1 − 2t−2.
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