Real Analysis

Chapter 1. Fundamentals of Measure and Integration Theory
1.4. Lebesgue-Stieltjes Measures and Distribution Functions—Proofs of
Theorems

L Theoem 142 |
Theorem 1.4.2 (continued)

Theorem 1.4.2. Let i be a Lebesgue-Stieltjes measure on R. Let
F : R — R be defined up to an additive constant, by
F(b) — F(a) = u(a, b]. Then F is a distribution function.

Proof (continued). Since sequence {x,}72, is an arbitrary monotone
decreasing sequence approaching x, then “mx_.-xo"(F(X) — F(x0)) =0, or
Iimx__,x[-)-- F(x) = F(xp); that is F is right-continuous at xp. Since xp is an
arbitrary real number, then F : R — R so right continuous, as claimed. [
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Theorem 1.4.2

Theorem 1.4.2. Let ;1 be a Lebesgue-Stieltjes measure on R. Let
F : R — R be defined up to an additive constant, by
F(b) — F(a) = u(a, b]. Then F is a distribution function.

Proof. Since a measure is nonnegative then for a < b we have
F(b) — F(a) = i((a, b]) > 0, so that F(a) < F(b) and F is increasing, as
claimed.

Let {x,}72; be an arbitrary sequence where x; > x > x3 > --- and
lim,_ o0 X = Xg. Then the sequence of sets

(X0, x1] D (X0, x2] D (x0,x3] D -+ is descending, so by the continuity of
measure (Proposition 17.2(ii) of Royden and Fitzpatrick) we have

lim (F(xa) = F(x0)) = lim_p((x0 %)) = g Jim (x0,:]) = (@) = 0.
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Lemma 1.4.3

Lemma 1.4.3. For y defined above on field Fo(R), p is countably
additive. That is, for Ay, Ay, ... disjoint sets in fg(ﬁ with
Wh1An € Fo(R) we have 11 (WUp21As) = 2071 i(An)-

Proof.

Case 1. First, suppose F(oc0) — F(—00) < oo so that p is finite. Let

A1 D Ay D A3 D -+ be a decreasing sequence of sets in Fy(R) such that
limp—oc A = N2 A, = . Let € > 0. For any (a, b, since F is right
continuous at x = a, there is a § > 0 such that if |a — &’| < § and

b > aPrime > a then F(a') — F(a) < e. Then (a, b] C (a, b] and

1((a, b]) = p((a', b]) = F(b) — F(a) — (F(b) — f(a")) = F(a') — F(a) < =.
Since € > 0 is arbitrary, then for each A, € fg(ﬁ) above, there is

B, € Fo(R) with B, C A, (and B, C A,) and p(A,) — ju(Bn) < g/2"
(since A, consists of a finite union of intervals of the form (a, b] so we can
find appropriate corresponding (a’, b] C (a, b] such that [&, b] C (a, b];
this is where we also use the fact that yu is a finite measure).

I Real Analysis Apil8,2010 5 /15



L lemmalds] . lmmailds]
Lemma 1.4.3 (continued 1) Lemma 1.4.3 (continued 2)

Proof (continued). Slnce N2, A, = @ then N, B, = @. Since each
B, is closed, then each B = R\ B, is open (m the order topology) and
so (N%,B,)" = &€ or U"C © .B;, = R (by De Morgan’s Laws). Since R) is 11(A)
compact and {B }is an open cover of R, then there is some finite

Proof (continued). ...so we have
= p(Ug—_1(Ak \ Bk)) since F is increasing then f is monotone

Z,{L(Ak \ Bk) by Exercise 1.4.B(i)

subcover of R, say By, 82 ..... . B, (that'is, {Bk}” | is a cover of R for <
some n € N). Then Uj_ 1Es’k—[@.and NI_1Bk = @. Now k=1
w(An) = p((An\ Nk=1Bik) U (Nk=1Bx«)) < Z 2% <e.
= (An \ Ng=1Bk) + 1 (Ng=1Bk) k=1
= 1 (An\ Ni=1Bk) since Ni—y Bk C M=y Bk = So for given £ > 0, there exists n € N such that p(A,) < & (and by
Now monotonicity, (1(Ax) < u(A,) < € for k > n). Therefore,
. . limp oo it(An) =0 B
An\ Mi—1Bk = Uk_1(An\ Bk) = Ug_1(An N B) Now let Cy, Gy, ... be disjoint sets in Fo(R) such that
= Uj_1(AcN Bg) since A, C Ag for k=1,2,...,n C=u>X,C, € Fo(R). Let A,=C\UP_,C,s0that Ay DA D--- and
= U7_(Ac\ By), liMp—oo An = liMpoe (C\ UL, Cp) = @
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Lemma 1.4.3 (continued 3) Lemma 1.4.3 (continued 4)
Proof (continued). Since we now know that lim,_. j(A,) = 0 and we
have Proof (continued).
WC) = p((C\UI_1C) W (U0_1Co)) Case 2. Second, suppose F(o0) — F(—o0) = oo. Define
= p(C\Wg_1G) + p (Vg1 Cp) since i is F(n) forx>n
finite additive additive by hypothesis Fn(x) = F(x) for|x|<n
n F(—n) for x < —n.
= A, + Z;L(Cn) since yu is finite additive
k=1 Let p1,, be the set function on Fo(R) defined with
SO _ _ n n((a, b]) = Fa(b) — Fp(a), as above. Then i, <y on Fo(R) and
nll,mx u(C) = nimw (P’-(An) + Zﬁ‘-(cn)) limp_oo ftn = 1. Let A1, Ay, ... be disjoint sets in .770(_) such that
k=1 A =2 A, € Fo(R). Then ;L(A) = (W21 An) =507 1u(An) by
L : Exermse 1.4.B(ii). Soif >-7; j(An) = oo then p(A) = oo and countable
- nll»m:)c H(An) + nll’moo (; H(G )) =0+ Z H(Ca), additivity holds in this case. So we can without loss of generality assume
or 1(C) = p (W32, Cp) = > peq i(Cp). Thatiis, p is countable additive in 2n=1 1

the case that p is a ﬁmte measure.



Lemma 1.4.3 (continued 5)

Proof (continued). Then

ifa) = Iim fin(A) since Iim o = j1 0N Fo(R)
= I|m (Z,u,,(Ak)) by Case 1, since
k=1

Ay are disjoint and pu, is finite.

Since > 771 u(Ak) < oo and p(A) > 307 1(A,) by Exercise 1.4.B(ii),

then
o0 oo
0 < (A=) uAk)= lim (Z ;;,,(Ak)) = 1(Ar)
k=1 k=1
> —
= r‘Ii\mmz (11n(Ak) — 11(Ak)) < 0 since j1, < 11 on Fo(R).
k=1
Therefore (1(A) = pu (W2, A,) = > 2 u(An) and countable additivity
holds in the case that p is an infinite measure. O
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Lemma 1.4.7 (continued 1)

Proof (continued). Next,

AbEazAbsasF(al,xz,xﬁ = Abzaz(F(XlaXL b3) — F(X13X2, 33)) from above

= ApaF(a1, %, b3) — Ap,a F(x1, X2, 33) since Ap,,. is linear
= F(x1, ba, b3) — F(x1, a2, b3) — F(x1, b, a3) + F(x1, a2, a3)
by the definition of Ap,a,
= p({w = (w1,w2,w3) | w1 < x1,w2 < by, w3 < b3})
—pu({w = (w1, w2,w3) | w1 < x1,w2 < a2,w3 < a3})
—p({w = (w1, w2, w3) | w1 < Xx1,w2 < by, w3 < a3})
+u({w = (w1, w2,ws) [ w1 < x1,32 <w2,w3 < a3}) by (¥)
= p{w = (wi,w2,w3) | w1 < x1,a2 <wz < b2, a3 < w3})
—p({w = (w1, w2, w3) | w1 < x1,82 < w2 < by, w3 < a3})
by the additivity of measure y

Lemma 1.4.7

Lemma 1.4.7. Let a,b € R3. If a < b (that is, the coordinates of a and b
satisfy a; < b; for i = 1,2,3), then
(a) u((a, b)) = p({w = (w1, w2, w3) € R3|ag <wi < by,ap <
wy < by, a3 <wz < b3}) = Dpya By Dbyas F(x1, X2, X3)
where
(b) Apyay AbyaDbyas F(x1, %2, X3) =
F(b1, bz, b3) — F(a1, bo, b3) — F(b1, az, b3) — F(b1, bz, a3) +
F(ai1, a2, b3) + F(a1, b2, a3) + F(b1, a2, a3) — F(a1, a2, a3).
Proof. We have

Dpyay F(a1, x2,x3) = F(x1, x2, b3) — F(x1, x2, a3) by the definition of Ap,,,

= p({w = (wi,w2,w3) | w1 < x1,w2 < x0, w3 < b3})
—p({w = (w1, w2,w3) | w1 < x1,w2 < x2,w3 < a3}) by (%)
= p{w = (w1, w2,w3) | w1 < x1,w2 < x2,33 < w3 < b3})

by the additivity of measure .
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Lemma 1.4.7 (continued 2)

Proof (continued).
= p({w = (w1,w2,w3) | w1 < x1,32 <wp < by, a3 < wsz < bs})
by the additivity of measure p

and

AblalAbzagAb;a3F(xl-X2f X3) = Abp’:‘}(F(Xla b?' b3) - F(X]_. 32'- b3)

—F(x1, b, a3) + F(x1, a2, a3)) from above

= ADpa F(x1, b2, b3) — Apa F(x1, a2, b3) — Apya F(x1, b2, a3)
+Ap, s, F(x1, a2, a3)) since Ap,,. is linear

= F(bl3 bo, b3) — F(al, bo, b3) — F(bl. an, b3) + F(al3 as, b3)
—F(b1, bo, a3) + F(a1, ba,a3) + F(b1, a2, a3) — F(a1, a2, a3)
by the definition of Ay, 5,
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Lemma 1.4.7 (continued 3) Lemma 1.4.7 (continued 4)

Proof (continued).
Proof (continued).
= pu({w = (w1,w2,w3) | a1 <wi < by,wr < by, w3 < b3})
= p({w = (w1,w2,w3) | w1 < b1, wp < by, w3 < bs})

—p({w = (w1,w2,w3) | a1 < w1 < bi,wz < 22, w3 < b3})
—p({w = (w1,w2,w3) | w1 < a1,w2 < by, w3 < bs}) —p({w = (w1, w2,w3) | a1 < w1 < b1, wp < b, a3 < w3})
—H{w = (w,w2,w3) w1 < br,wp < 22,03 < bs}) +u({w = (w1, w2,ws) | a1 < w1 < by,wp < a2, w3 < a3})
u({w = (Wi, w2,ws) [ w1 < 21,02 < 22,03 < bs}) by the additivity of measure ;1 (combining pairs)
—{w = (W, w2,ws) [ w1 < br,wz < by, w3 < 33}) = p{w = (w1,w2,w3) | a1 < w1 < by, a2 < w2 < by, w3 < bs})
tu({w = (w1, w2,w3) [ w1 < a1, w2 < by, w3 < a3}) —p({w = (w1, w2, w3) | a1 < w1 < by, a2 < wa < by,ws < a3})
Fullw = (w1, wp,ws) [ w1 < bywn < 22,03 < 33)) = p({w = (w1,w2,w3) | a1 <wi < by, a <wp < by, a3 < w3 < bs})
—p({w = (w1,w2,w3) | w1 < a1,w2 < 2, w3 < a3}) by () by the additivity of measure . (combining pairs)
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