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Chapter 1. Fundamentals of Measure and Integration Theory
1.4. Lebesgue-Stieltjes Measures and Distribution Functions—Proofs of
Theorems
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Theorem 1.4.2

Theorem 1.4.2. Let u be a Lebesgue-Stieltjes measure on R. Let
F : R — R be defined up to an additive constant, by
F(b) — F(a) = p(a, b]. Then F is a distribution function.
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Theorem 1.4.2

Theorem 1.4.2

Theorem 1.4.2. Let u be a Lebesgue-Stieltjes measure on R. Let
F : R — R be defined up to an additive constant, by
F(b) — F(a) = p(a, b]. Then F is a distribution function.

Proof. Since a measure is nonnegative then for a < b we have

F(b) — F(a) = p((a, b]) > 0, so that F(a) < F(b) and F is increasing, as

claimed.
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Theorem 1.4.2

Theorem 1.4.2. Let u be a Lebesgue-Stieltjes measure on R. Let
F : R — R be defined up to an additive constant, by
F(b) — F(a) = p(a, b]. Then F is a distribution function.

Proof. Since a measure is nonnegative then for a < b we have
F(b) — F(a) = p((a, b]) > 0, so that F(a) < F(b) and F is increasing, as
claimed.

Let {x,}°°, be an arbitrary sequence where x; > xo > x3 > --- and
lim,_o Xp = xp. Then the sequence of sets
(x0,x1] D (X0, x2] D (x0,x3] D - -+ is descending, so by the continuity of

measure (Proposition 17.2(ii) of Royden and Fitzpatrick) we have

im (F(x0) = F(x0)) = Jim_u((x0.3:)) = s (

n—oo

(xo,xn]) = (@) = 0.

lim
n—o0
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Theorem 1.4.2 (continued)

Theorem 1.4.2. Let i be a Lebesgue-Stieltjes measure on R. Let
F : R — R be defined up to an additive constant, by
F(b) — F(a) = p(a, b]. Then F is a distribution function.

Proof (continued). Since sequence {x,}°2 is an arbitrary monotone
decreasing sequence approaching x, then IimX_>XO+(F(x) — F(x0)) =0, or
lim, F(x) = F(xo); that is F is right-continuous at xp. Since xp is an

arbitrary real number, then F : R — R so right continuous, as claimed. [
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Lemma 1.4.3

Lemma 1.4.3. For 4 defined above on field F5(R),  is countably
additive. That is, for Ay, Ay, ... disjoint sets in Fo(R) with
UZOZIAn € fO(R) we have :u( n:lA ) - Zn:l ,U,(An)
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Lemma 1.4.3

Lemma 1.4.3. For 4 defined above on field F5(R),  is countably
additive. That is, for Ay, Ay, ... disjoint sets in Fo(R) with
UZOZIAn € fO(R) we have :u( n:lA ) Zn:l ,U,(An)

Proof.

Case 1. First, suppose F(00) — F(—00) < oo so that y is finite. Let

A1 D Ay D A3 D --- be a decreasing sequence of sets in Fo(R) such that
limp—oo Ap =N, A, = @. Let € > 0. For any (a, b], since F is right
continuous at x = a, there is a ¢ > 0 such that if |a — a'| < ¢ and

b > aPrime > a then F(a') — F(a) < e. Then (&, b] C (a, b] and

p((a, b)) = p((d', B]) = F(b) — F(a) — (F(b) — f(a)) = F(a)) — F(a) <e.
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Lemma 1.4.3

Lemma 1.4.3. For 4 defined above on field F5(R),  is countably
additive. That is, for Ay, Ay, ... disjoint sets in Fo(R) with
UZOZIAn € fO(R) we have :u( n:lA ) Zn:l ,U,(An)

Proof.

Case 1. First, suppose F(00) — F(—00) < oo so that y is finite. Let

A1 D Ay D A3 D --- be a decreasing sequence of sets in Fo(R) such that
limp—oo Ap =N, A, = @. Let € > 0. For any (a, b], since F is right
continuous at x = a, there is a ¢ > 0 such that if |a — a'| < ¢ and

b > aPrime > a then F(a') — F(a) < e. Then (&, b] C (a, b] and

p((a, b]) = u((a', b]) = F(b) — F(a) — (F(b) — f(d)) = F(a') - F(a) <e.
Since € > 0 is arbitrary, then for each A, € fo(ﬁ) above, there is

B, € Fo(R) with B, C A, (and B, C Ap) and u(A,) — u(B,) < g/2"
(since A, consists of a finite union of intervals of the form (a, b] so we can
find appropriate corresponding (&', b] C (a, b] such that [4', b] C (a, b];
this is where we also use the fact that pu is a finite measure).
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Lemma 1.4.3

Lemma 1.4.3 (continued 1)

Proof (continued). Smce Npe1An = & then N2 ° B, = @. Since each
B, is closed, then each B R\ B, is open (|n the order topology) and
so (N%,B,)" = &€ or U°° ° B;, =R (by De Morgan's Laws). Since R) is
compact and {B }is an open cover of R, then there is some finite

subcover of R, say B, B2, ..., B} (that is, {Bk} 1 is a cover of R for
some n € N). Then U?_, B} = ]R and N7_, By =
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Lemma 1.4.3

Lemma 1.4.3 (continued 1)

Proof (continued). Smce Npe1An = & then N2 ° B, = @. Since each
B, is closed, then each B = R\ B, is open (|n the order topology) and
so (N%,B,)" = &€ or U°° ° B;, =R (by De Morgan's Laws). Since R) is
compact and {B }is an open cover of R, then there is some finite
subcover of R, say B, B2, ..., B} (that is, {Bk} _, is a cover of R for
some n € N). Then Uj_ 1Bk = ]R and N7_;Bx = @. Now
p(An) = p((An \ Nkt Bi) W (Mg=1Bk))
= p(An\ Nk=1Bi) + 1 (Nk=1 Bx)
= u(A,\NJ_1Bx) since Nj_{ Bk CNi_1Bx =@

A\ NMg=1Be = UE_1(An \ Bk) = Ug_1(A, N By)
= Ui_1(AxkN Bg) since A, C A for k=1,2,..
= Ug=1(Ax \ Bi),
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Lemma 1.4.3 (continued 2)

Proof (continued). ...so we have
w(An) = p(Ui_1(Ak\ Bk)) since F is increasing then p is monotone
n
< ) u(Ac\ By) by Exercise 1.4.B(i)
k=1
"¢
< kz_jl o <€

So for given € > 0, there exists n € N such that x(A,) < € (and by
monotonicity, 11(Ak) < p(An) < € for k > n). Therefore,
limp_o00 11(An) = 0.
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Lemma 1.4.3 (continued 2)

Proof (continued). ...so we have
w(An) = p(Ui_1(Ak\ Bk)) since F is increasing then p is monotone
n
< ) u(Ac\ By) by Exercise 1.4.B(i)
k=1
"¢
< Y o <€
k=1

So for given € > 0, there exists n € N such that x(A,) < € (and by
monotonicity, 11(Ak) < p(An) < € for k > n). Therefore,

limp_o00 11(An) = 0.

Now let Cy, Gy, ... be disjoint sets in Fo(RR) such that

C=2,C, € Fo(R). Let A, =C\ Up_;Cnsothat Ay D Ay D --- and
limp—oo Ap = limp_oo (C\UL_1Cy) = .
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Lemma 1.4.3 (continued 3)

Proof (continued). Since we now know that lim,_. 1t(An) = 0 and we

have
w(€) = p((C\UZ1Cr) U (k=1 Gn))
= p(C\Wg_1G) + 1 (Ug—1 Cp) since p is
finite additive additive by hypothesis

= )+ Zu ) since  is finite additive
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Lemma 1.4.3 (continued 3)

Proof (continued). Since we now know that lim,_. 1t(An) = 0 and we
have

w(€) = p((C\UZ1Cr) U (k=1 Gn))
1 (C\UE_1 Cn) + p (k=1 Cn) since puis
finite additive additive by hypothesis

= )+ Zu ) since  is finite additive
so n
lim p(C) = lim (u(An) + Zu(Cn)>

= lim p(A,)+ lim ( u(Cn)> :O+ZM(Cn)7
k=1

n—o0 n—oo
k=1

or (C) = p (U321 Cp) = ey #(Cp). Thatis, u is countable additive in
the case that w is a finite measure.
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Lemma 1.4.3

Lemma 1.4.3 (continued 4)

Proof (continued).
Case 2. Second, suppose F(00) — F(—o0) = oo. Define

F(n) forx>n
Fa(x) = F(x) for|x|<n
F(—n) for x < —n.

Let 1, be the set function on Fo(R) defined with B
wn((a, b]) = Fn(b) — Fn(a), as above. Then u, < pon Fo(R) and

liMp_oo fbn = -
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Lemma 1.4.3 (continued 4)

Proof (continued).
Case 2. Second, suppose F(00) — F(—o0) = oo. Define

F(n) forx>n
Fa(x) = F(x) for|x|<n
F(—n) for x < —n.

Let 1, be the set function on Fo(R) defined with

pn((a, b]) = Fn(b) — Fn(a), as above. Then 1, < 1 on Fo(R) and

limp oo ptn = 1. Let Ap, Ay, ... be disjoint sets in Fo(R) such that

A = U, An € Fo(R). Then u(A) = i (U321 An) = 50, u(Ag) by
Exercise 1.4.B(ii). So if 377 ; u(An) = oo then u(A) = oo and countable
additivity holds in this case. So we can without loss of generality assume

> ome1 M(An) < o0.
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Lemma 1.4.3 (continued 5)

Proof (continued). Then

w(A) = lim up(A) since lim p, = pon Fo(R)

n—

= lim (ZMn(Ak)> by Case 1, since
k=1

Ay are disjoint and p, is finite.
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Lemma 1.4.3 (continued 5)

Proof (continued). Then

w(A) = lim p,(A) since lim p, = pon Fo(R)

= lim (ZMn(Ak)> by Case 1, since
k=1

Ay are disjoint and p, is finite.

Since Y771 (Ak) < oo and p(A) > >0 u(As) by Exercise 1.4.B(ii),

then o o -
0 < p(A)= n(A) = lim (Zun(Ak)> = (A
k=1 k=1 k=1
= lim Z (en(Ark) — 1(Ax)) < 0 since i, < 1 on Fo(R).
k=1
Therefore u(A) = p (WS, An) = > 021 (An) and countable additivity
holds in the case that p is an infinite measure. O
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Lemma 1.4.7

Lemma 1.4.7

Lemma 1.4.7. Let a,bc R3. Ifa< b (that is, the coordinates of a and b
satisfy a; < b; for i = 1,2,3), then
(a) u((a, b]) = ,u({w = (wl,wg,W3) eR3 | a<wi <bh,a<
wr < byya3 < w3 < b3}) = Ap gy Abya Dbyay Fx1, X2, X3)
where
(b) Apyay Dbyay Dbyas F(x1,x2,x3) =
F(bl, b2, b3) - F(al, bz, b3) — F(bl, az, b3) — F(bl, bz, 33) +
F(al, ar, b3) + F(al, by, 33) + F(bl, ar, 83) — F(al, ar, 83).
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Lemma 1.4.7

Lemma 1.4.7

Lemma 1.4.7. Let a,bc R3. Ifa< b (that is, the coordinates of a and b
satisfy a; < b; for i = 1,2,3), then
(a) u((a, b]) = ,u({w = (wl,wg,W3) S ]R3 | a] <wi < b1,32 <

wy < boyaz <wz < b3}) = Apya Dbyay Abyas F (X1, X2, X3)
where

(b) ApyayAbyayApyas F(x1, X2, Xx3) =
F (b1, bo, b3) — F(a1, bz, b3) — F(b1, a2, b3) — F(b1, by, a3) +
F(al, ar, b3) + F(al, b2, 33) + F(bl, ar, 83) — F(al, ar, 83).
Proof. We have

ApyasF(a1,x2,x3) = F(x1, X2, b3) — F(x1, x2, a3) by the definition of Ap,,,

= p({w = (w1,w2,w3) | w1 < x1,w2 < X0, w3 < b3})
—p({w = (w1, w2, w3) | w1 < x1,w2 < X0, w3 < a3}) by (%)
= p{w = (w1,w2,w3) | w1 < x1, w2 < x0,a83 < w3 < bz})

by the additivity of measure (.
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Lemma 1.4.7 (continued 1)

Proof (continued). Next,

Ab222Abga3F(al7X27X3) = Abzag(F(X17X27 b3) — F(Xl,Xz, 33)) from above

= Ap,a,F(a1,x2, b3) — Ap,ay F(x1, %2, a3) since Ap,,. is linear

= F(x1, b2, b3) — F(x1, a2, b3) — F(x1, b2, a3) + F(xi, a2, a3)
by the definition of Ay,

= p({w = (w1,w2,w3) | w1 < xq,w2 < by, w3 < b3})
—p({w = (w1, w2,ws) | w1 < x1, w2 < @2, w3 < a3})
—p({w = (w1,w2,w3) | w1 < X1, w2 < by, w3 < a3})
+u({w = (w1, w2,w3) | w1 < x1, 32 < w2,w3 < a3}) by (*)
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Lemma 1.4.7 (continued 1)

Proof (continued). Next,

Ab222Abga3F(al7X27X3) = Abzag(F(X17X27 b3) — F(Xl,Xz, 33)) from above

= Ap,aF(a1,x0, b3) — Ap,a, F(x1, X2, a3) since Ap,,. is linear

= F(x1, bo, b3) — F(xa, a2, b3) — F(x1, b2, a3) + F(x1, a2, a3)
by the definition of Ay,

= p{w = (wi,w2,w3) | w1 < x1,w2 < by, w3 < bs})
—p({w = (w1, w2,ws) | w1 < x1, w2 < @2, w3 < a3})
—p({w = (w1,w2,w3) | w1 < X1, w2 < by, w3 < a3})
+u({w = (w1, w2, w3) | w1 < x1,a2 < wo, w3 < az}) by (%)

= p{w = (w1,w2,w3) | w1 < x1,82 < wy < by, a3 < ws})
—u({w = (w1, w2, w3) | w1 < x1,82 < wa < by,ws < az})
by the additivity of measure p
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Lemma 1.4.7 (continued 2)

Proof (continued).

= p{w=(wi,w2,w3) | w1 < x1,a2 <wy < by, a3 <ws < b3})
by the additivity of measure p
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Lemma 1.4.7 (continued 2)
Proof (continued).

= p{w=(wi,w2,w3) | w1 < x1,a2 <wy < by, a3 <ws < b3})
by the additivity of measure p

and
AblalAbzazAb3agF(XlaX27X3) = Ablal(F(X17 b27 b3) - F(X17 ao, b3)

—F(x1, by, a3) + F(x1, az, a3)) from above

= Apa F(x1, b2, b3) — Apa F(x1, a2, b3) — Apya F(x1, bo, a3)

+Ap, 2, F(x1, a2, a3)) since A, is linear
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Lemma 1.4.7 (continued 2)

Proof (continued).
= p{w=(wi,w2,w3) | w1 < x1,a2 <wy < by, a3 <ws < b3})
by the additivity of measure p
and
AblalAbzazAb3agF(XlaX27X3) = Ablal(F(X17 b27 b3) - F(X17 as, b3)
—F(x1, by, a3) + F(x1, az, a3)) from above
— Ablal F(X17 b27 b3) - Abla]_ F(X17 ‘327 b3) - Ablal F(X17 b27 33)
+Ap, 2, F(x1, a2, a3)) since A, is linear
= F(by, b2, b3) — F(a1, bp, b3) — F(b1, a2, b3) + F(a1, a2, b3)

—F (b1, bp, a3) + F(a1, b, a3) + F(b1, a2, a3) — F(a1, a2, a3)
by the definition of Ay,
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Lemma 1.4.7 (continued 3)

Proof (continued).

= p({w = (w1, w2,w3) | w1 < b1,w2 < by, w3 < bs})

ar, w2 < bp,ws < az}

)
)
)
b, ws < by w3 < az})
)
b, wr < a2, w3 < asz})

)

(VAN VAN VAN VANRE VAR VAN

a1, wp < ap,ws < az}) by (*)
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Lemma 1.4.7 (continued 4)

Proof (continued).

= p({w = (w1,w2,w3) | a1 < w1 < by,ws < by, w3 < bs})

—u({w = (CU1,CU2,W3) | a1 <wi < b,wr < ap,ws < b3})
bz, a3z < W3})
az,ws < asz})
by the additivity of measure i (combining pairs)

—p({w = (w1,w2,w3) | a1 < wi < by,wy <
<

+pu({w = (w1, wo,w3) | a1 <wi < by,wo
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Lemma 1.4.7 (continued 4)

Proof (continued).

= p({w = (w1,w2,w3) | a1 < w1 < by,ws < by, w3 < bs})

—u({w = (wl,wg,uJ3) | a1 <wi < b,wr < ap,ws < b3})
bg, a3z < W3})
az,ws < asz})
by the additivity of measure i (combining pairs)

—p({w = (w1,w2,w3) | a1 < wi < by,wy <
<

+pu({w = (w1, wo,w3) | a1 <wi < by,wo

= p{w = (w1,w2,w3) | a1 <wi < by, a2 <wp < by, w3 < b3})
—p({w = (w1,w2,w3) | a1 < w1 < by, a2 <ws < by, w3 < az})

= pu{w = (w1,w2,w3) | a1 <wi < b1, a2 <wp < by, a3 < wz < bs})
by the additivity of measure p (combining pairs)

O
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