Real Analysis

Chapter 4. Basic Concepts of Probability 4.5. Conditional Probability—Proofs of Theorems

Real Analysis

Theorem 4.5.1.

(a) Let P(A) > 0. Events A and B are independent if and only if P(B | A) = P(B).
(b) Let P(A₁ ∩ A₂ ∩ · · · ∩ A_{n-1}) > 0. Then P(A₁ ∩ A₂ ∩ · · · ∩ A_n) = P(A₁)P(A₂ | A₁)P(A₃ | A₁ ∩ A₂) · · · · · · P(A_n | A₁ ∩ A₂ ∩ · · · ∩ A_{n-1}).

Proof. (a) By definition, $P(A \cap B) = P(B \mid A)P(A)$. If A and B are independent then $P(A \cap B) = P(A)P(B)$ so that we have $P(B) = P(B \mid A)$, as claimed. If $P(B \mid A) = P(B)$, then we have $P(A \cap B) = P(A)P(B)$ and so A and B are independent, as claimed.

Real Analysis

Theorem 4.5.1.

(a) Let P(A) > 0. Events A and B are independent if and only if P(B | A) = P(B).
(b) Let P(A₁ ∩ A₂ ∩ · · · ∩ A_{n-1}) > 0. Then P(A₁ ∩ A₂ ∩ · · · ∩ A_n) = P(A₁)P(A₂ | A₁)P(A₃ | A₁ ∩ A₂) · · · · · · P(A_n | A₁ ∩ A₂ ∩ · · · ∩ A_{n-1}).

Proof. (a) By definition, $P(A \cap B) = P(B \mid A)P(A)$. If A and B are independent then $P(A \cap B) = P(A)P(B)$ so that we have $P(B) = P(B \mid A)$, as claimed. If $P(B \mid A) = P(B)$, then we have $P(A \cap B) = P(A)P(B)$ and so A and B are independent, as claimed.

(b) Since $P(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) > 0$ then by monotonicity of measure, $P(A_1 \cap A_2 \cap \cdots \cap A_k) > P(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) > 0$ for k = 1, 2, ..., n-1.

Theorem 4.5.1.

(a) Let P(A) > 0. Events A and B are independent if and only if P(B | A) = P(B).
(b) Let P(A₁ ∩ A₂ ∩ · · · ∩ A_{n-1}) > 0. Then P(A₁ ∩ A₂ ∩ · · · ∩ A_n) = P(A₁)P(A₂ | A₁)P(A₃ | A₁ ∩ A₂) · · · · · · P(A_n | A₁ ∩ A₂ ∩ · · · ∩ A_{n-1}).

Proof. (a) By definition, $P(A \cap B) = P(B \mid A)P(A)$. If A and B are independent then $P(A \cap B) = P(A)P(B)$ so that we have $P(B) = P(B \mid A)$, as claimed. If $P(B \mid A) = P(B)$, then we have $P(A \cap B) = P(A)P(B)$ and so A and B are independent, as claimed.

(b) Since $P(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) > 0$ then by monotonicity of measure, $P(A_1 \cap A_2 \cap \cdots \cap A_k) > P(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) > 0$ for k = 1, 2, ..., n-1.

Theorem 4.5.1 (continued)

Proof (continued). Inductively, we have

$$P((A_1 \cap A_2 \cap \dots \cap A_{n-1}) \cap A_n)$$

$$= P((A_1 \cap A_2 \cap \dots \cap A_{n-2}) \cap A_{n-1})P(A_n \mid A_1 \cap A_2 \cap \dots \cap A_{n-1}))$$

$$= P((A_1 \cap A_2 \cap \dots \cap A_{n-2})P(A_{n-1} \mid A_1 \cap A_2 \cap \dots \cap A_{n-2}))$$

$$\times P(A_n \mid A_1 \cap A_2 \cap \dots \cap A_{n-1})$$

$$= P((A_1 \cap A_2 \cap \cdots \cap A_i)P(A_{i+1} \mid A_1 \cap A_2 \cap \cdots \cap A_i))$$

$$\times P(A_{i+2} \mid A_1 \cap A_2 \cap \cdots \cap A_{i+1}) \cdots P(A_n \mid A_1 \cap A_2 \cap \cdots \cap A_{n-1})$$

 $= P(A_1)P(A_2 | A_1)P(A_3 | A_1 \cap A_2) \cdots P(A_{n-1} | A_1 \cap A_2 \cap \cdots \cap A_{n-2}) \\ \times P(A_n | A_1 \cap A_2 \cap \cdots \cap A_{n-1})$

.

Theorem 4.5.2. Theorem of Total Probability.

Let B_1, B_2, \ldots form a finite or countably infinite family of mutually exclusive and exhaustive events; that is, $\bigcup_i B_i = \Omega$.

- (a) If A if any event, then $P(A) = \sum_{i} P(A \cap B_i)$. Thus P(A) is calculated by making a list of mutually exclusive exhaustive ways in which A can happen, and adding the individual probabilities.
- (b) $P(A) = \sum_{i} P(B_i)P(A | B_i)$ where the sum is taken over those *i* for which $P(B_i) > 0$. Thus P(A) is a weighted average of the conditional probabilities $P(A | B_i)$.

Proof. (a) We have by countable additivity:

$$P(A) = P(A \cap \Omega) = P(A \cap (\bigcup_i B_i)) = P(\bigcup_i (A \cap B_i)) = \sum_i P(A \cap B_i).$$

Theorem 4.5.2. Theorem of Total Probability.

Let B_1, B_2, \ldots form a finite or countably infinite family of mutually exclusive and exhaustive events; that is, $\cup_i B_i = \Omega$.

- (a) If A if any event, then $P(A) = \sum_{i} P(A \cap B_i)$. Thus P(A) is calculated by making a list of mutually exclusive exhaustive ways in which A can happen, and adding the individual probabilities.
- (b) $P(A) = \sum_{i} P(B_i)P(A | B_i)$ where the sum is taken over those *i* for which $P(B_i) > 0$. Thus P(A) is a weighted average of the conditional probabilities $P(A | B_i)$.

Proof. (a) We have by countable additivity:

$$P(A) = P(A \cap \Omega) = P(A \cap (\cup_i B_i)) = P(\cup_i (A \cap B_i)) = \sum_i P(A \cap B_i).$$

Theorem 4.5.2 (continued)

Proof (continued). (b) By part (a), $P(A) = \sum_{i} P(A \cap B)i$). If $P(B_i) = 0$ for some *i* then by monotonicity $P(A \cap B_i) \le P(B_i) = 0$. If $P(B_i) > 0$ then by definition of conditional probability, $P(A \cap B_i) = P(B_i)P(A \mid B_i)$. So

$$P(A) = \sum_{i} P(A \cap B_i) = \sum_{i'} P(B_{i'}P(A \mid B_{i'}))$$

where i' ranges over all values for which $P(B_{i'}) > 0$, as claimed.

Theorem 4.5.2 (continued)

Proof (continued). (b) By part (a), $P(A) = \sum_{i} P(A \cap B)i$). If $P(B_i) = 0$ for some *i* then by monotonicity $P(A \cap B_i) \le P(B_i) = 0$. If $P(B_i) > 0$ then by definition of conditional probability, $P(A \cap B_i) = P(B_i)P(A \mid B_i)$. So

$$P(A) = \sum_{i} P(A \cap B_i) = \sum_{i'} P(B_{i'}P(A \mid B_{i'}))$$

where i' ranges over all values for which $P(B_{i'}) > 0$, as claimed.