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Lemma 4.6.A

Lemma 4.6.A

Lemma 4.6.A. Let X be a random variable on probability space
(Ω,F ,P). Then the distribution function F of X is increasing and
right-continuous. Also,

lim
x→∞

F (x) = 1 and lim
x→−∞

F (x) = 0.

Proof. From (∗), for any a < b we have

F (b)− F (a) = PX ((a, b]) = P({ω | X (ω) ∈ (a, b]}) ≥ 0

since P is a measure. So F is increasing, as claimed.

For b ∈ R, we
consider

lim
x→b+

F (x) = lim
h→0+

F (b + h) = lim
h→0+

P({ω | X (ω) ≤ b + h})

Since F is monotone increasing then one-sided limits exist, so we consider
a sequence {b + 1/n} → b+ to evaluate limx→b+ F (x):
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Lemma 4.6.A

Lemma 4.6.A, continued 1

Proof (continued).

lim
x→b+

F (x) = lim
n→∞

P({ω | X (ω ≤ b + 1/n})

= P
(

lim
n→∞

{ω | X (ω) ≤ b + 1/n}
)

by the

Continuity of Measure (Proposition 17.2),

since {En}∞n=1 where En = {ω | X (ω) ≤ b + 1/n}
is a descending sequence of sets

= P (∩∞n=1{ω | X (ω) ≤ b + 1/n})
= P({ω | X (ω) ≤ b}) = F (b).

So F is right-continuous. Since P is a measure, P(∅) = 0 and since
(Ω,F ,P) is a probability space then P(Ω) = 1.
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Lemma 4.6.A

Lemma 4.6.A, continued 2

Proof (continued). Again by Continuity of Measure

0 = P(∅) = P (∩∞n=1{ω | X (ω) ≤ −n}) = P
(

lim
n→∞

{ω | X (ω) ≤ −n}
)

= lim
n→∞

P ({ω | X (ω) ≤ −n}) = lim
n→∞

F (−n)

= lim
n→−∞

F (x) since F is monotone increasing,

and

1 = P(Ω) = P (∪∞n=1{ω | X (ω) ≥ n})

= P
(

lim
n→∞

{ω | X (ω) ≥ n}
)

= lim
n→∞

P({ω | X (ω) ≥ n}) = lim
n→∞

F (n) = lim
x→∞

F (x),

as claimed.
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Lemma 4.6.B

Lemma 4.6.B

Lemma 4.6.B. If F : R → [0, 1] is an increasing and right-continuous
function with limx→∞ F (x) = 1 and limx→−∞ F (x) = 0, then F is the
distribution function of some random variable. Note: Though F is defined
on R, we denote limx→∞ F (x) = F (∞) and limx→−∞ F (x) = F (−∞).

Proof. We take Ω = R, F = B(R) (the Borel sets in R), and define
X (ω) = ω for ω ∈ Ω (s X is the identity map on Ω = R). We use F to
define a probability measure P; define P((a, b]) = F (b) = F (a) for all
a, b ∈ R and define P(∅) = 0. Then P is defined on all (a, b] ⊂ R and the
set of all such (a, b] (along with ∅) form a semiring S.

Notice that P is
finitely additive on S: if

(a, b] = (a1, b1] ∪· (a2, b2] ∪· · · · ∪· (an, bn]

(where, say, a1 = a, bn = b, and ai = bi−1 for i = 2, 3, . . . , n) then. . .
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Lemma 4.6.B

Lemma 4.6.B (continued 1)

Proof (continued). P((a1, b1]) + P((a2, b2]) + · · ·P((an, bn])

= (F (b1)− F (a1)) + (F (b2)− F (a2)) + · · ·+ (F (bn)− F (an))

= −F (a1) + (F (b1)− F (a2)) + (F (b2)− F (a3)) + · · ·
+(F (bn−1)− F (an)) + F (bn)

= F (bn)− F (a1) since ai = bi−1 for i = 2, 3, . . . , n

= F (b)− F (a) since a1 = a and bn = b

= P((a, b]) = P((a1, b1] ∪· (a2, b2] ∪· · · · ∪· (an, bn]).

In Exercise 4.6.A, it is to be shown that P is countably monotone on S
(that is, if E = (a, b] ∈ S and {Ek}∞k=1 is a countable collection of sets in
S such that E ⊂ ∪∞k=1Ek ∈ S then P(E ) ≤

∑∞
k=1 P(Ek)). So P is a

premeasure on semiring S. By the Carathéodory-Hahn Theorem, there is a
measure P defined on the smallest σ-algebra containing S that extends P
and by the Carathéodory Theorem, since P is σ-finite, P is unique. We
also denote this measure as P = P.
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measure P defined on the smallest σ-algebra containing S that extends P
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Lemma 4.6.B

Lemma 4.6.B (continued 2)

Proof (continued). (Notice that the smallest σ-algebra containing all
subsets of R of the form (a, b] is B(R), by Exercise 1.36 in Royden and
Fitzpatrick.) So (R,B(R),P) is a probability space. For x ∈ R,

F (x) = F (x)− F (−∞) since F (−∞) = lim
y→−∞

F (y) = 0

= F (x)− lim
y→−∞

F (y) = lim
y→−∞

(F (x)− F (y))

= lim
y→∞

P((y , x ]) = lim
n→−∞

P((−n, x ]) since P is monotone

and P((y , x ]) is a decreasing function of y so the limit can

be evaluated using any sequence of values {yn} → −∞

= P

(
lim

n→−∞
(−n, x ]

)
by Continuity of Measure since {(−n, x ]}

is an increasing sequence of sets (for n sufficiently large)

= P((−∞, x ]) = P(ω | ω ≤ x) = P(ω | X (ω) ≤ x} since X (ω) = ω,

so F is the distribution of random variable X , as claimed.
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Lemma 4.6.C

Lemma 4.6.C

Lemma 4.6.C. Random variable X is continuous if and only if
P({X = x}) = 0 for all x ∈ R.

Proof. Let F be the distribution function of X :

F (x) = P({ω | X (ω) ≤ x}) = P({ω | ω ≤ x}) = P((−∞, x ]).

Then P((a, b]) = F (b)− F (a) from (∗). For n ∈ N, consider
{(b − 1/n, b]}∞n=1.

This is a decreasing sequence of sets with
limn→∞(b − 1/n, b] = {b}, so by Continuity of Measure P (Proposition
17.2(ii) of Royden and Fitzpatrick),

P({b}) = P
(

lim
n→∞

(b − 1/n, b]
)

= lim
n→∞

P((b − 1/n, b])

= lim
n→∞

F (b)− F (b − 1/n).
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Lemma 4.6.C

Lemma 4.6.C (continued)

Lemma 4.6.C. Random variable X is continuous if and only if
P({X = x}) = 0 for all x ∈ R.

Proof (continued). Now F is left-continuous on R if and only if
limn→∞ F (b − 1/n) = F (b) for all b ∈ R; that is, if and only if F is
continuous at all b ∈ R (since we already know by definition that F is
right-continuous). So F is continuous if and only if P({b}) = 0 for all
b ∈ R. That is, X is continuous if and only if P(X = x) = 0 for all x ∈ R,
as claimed.
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