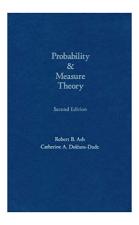
Real Analysis

Chapter 4. Basic Concepts of Probability 4.6. Random Variables—Proofs of Theorems



Lemma 4.6.A. Let X be a random variable on probability space (Ω, \mathcal{F}, P) . Then the distribution function F of X is increasing and right-continuous. Also,

$$\lim_{x\to\infty}F(x)=1 \text{ and } \lim_{x\to-\infty}F(x)=0.$$

Proof. From (*), for any a < b we have

 $F(b) - F(a) = P_X((a, b]) = P(\{\omega \mid X(\omega) \in (a, b]\}) \ge 0$

since P is a measure. So F is increasing, as claimed.

3 / 10

Lemma 4.6.A. Let X be a random variable on probability space (Ω, \mathcal{F}, P) . Then the distribution function F of X is increasing and right-continuous. Also,

$$\lim_{x\to\infty}F(x)=1 \text{ and } \lim_{x\to-\infty}F(x)=0.$$

Proof. From (*), for any a < b we have

$$F(b) - F(a) = P_X((a, b]) = P(\{\omega \mid X(\omega) \in (a, b]\}) \ge 0$$

since P is a measure. So F is increasing, as claimed. For $b \in \mathbb{R}$, we consider

$$\lim_{x \to b^+} F(x) = \lim_{h \to 0^+} F(b+h) = \lim_{h \to 0^+} P(\{\omega \mid X(\omega) \le b+h\})$$

Since F is monotone increasing then one-sided limits exist, so we consider a sequence $\{b+1/n\} \to b^+$ to evaluate $\lim_{x\to b^+} F(x)$:

Lemma 4.6.A. Let X be a random variable on probability space (Ω, \mathcal{F}, P) . Then the distribution function F of X is increasing and right-continuous. Also,

$$\lim_{x\to\infty}F(x)=1 \text{ and } \lim_{x\to-\infty}F(x)=0.$$

Proof. From (*), for any a < b we have

$$F(b) - F(a) = P_X((a, b]) = P(\{\omega \mid X(\omega) \in (a, b]\}) \ge 0$$

since *P* is a measure. So *F* is increasing, as claimed. For $b \in \mathbb{R}$, we consider

$$\lim_{x \to b^+} F(x) = \lim_{h \to 0^+} F(b+h) = \lim_{h \to 0^+} P(\{\omega \mid X(\omega) \le b+h\})$$

Since F is monotone increasing then one-sided limits exist, so we consider a sequence $\{b+1/n\} \to b^+$ to evaluate $\lim_{x \to b^+} F(x)$:

Proof (continued).

$$\lim_{x \to b^+} F(x) = \lim_{n \to \infty} P(\{\omega \mid X(\omega \le b + 1/n\}))$$

= $P\left(\lim_{n \to \infty} \{\omega \mid X(\omega) \le b + 1/n\}\right)$ by the
Continuity of Measure (Proposition 17.2),
since $\{E_n\}_{n=1}^{\infty}$ where $E_n = \{\omega \mid X(\omega) \le b + 1/n\}$
is a descending sequence of sets
= $P\left(\bigcap_{n=1}^{\infty} \{\omega \mid X(\omega) \le b + 1/n\}\right)$
= $P(\{\omega \mid X(\omega) \le b\}) = F(b).$

So *F* is right-continuous. Since *P* is a measure, $P(\emptyset) = 0$ and since (Ω, \mathcal{F}, P) is a probability space then $P(\Omega) = 1$.

Proof (continued).

$$\lim_{x \to b^+} F(x) = \lim_{n \to \infty} P(\{\omega \mid X(\omega \le b + 1/n\}))$$

= $P\left(\lim_{n \to \infty} \{\omega \mid X(\omega) \le b + 1/n\}\right)$ by the
Continuity of Measure (Proposition 17.2),
since $\{E_n\}_{n=1}^{\infty}$ where $E_n = \{\omega \mid X(\omega) \le b + 1/n\}$
is a descending sequence of sets
= $P\left(\bigcap_{n=1}^{\infty} \{\omega \mid X(\omega) \le b + 1/n\}\right)$
= $P(\{\omega \mid X(\omega) \le b\}) = F(b).$

So F is right-continuous. Since P is a measure, $P(\emptyset) = 0$ and since (Ω, \mathcal{F}, P) is a probability space then $P(\Omega) = 1$.

Proof (continued). Again by Continuity of Measure

$$0 = P(\emptyset) = P(\bigcap_{n=1}^{\infty} \{ \omega \mid X(\omega) \le -n \}) = P\left(\lim_{n \to \infty} \{ \omega \mid X(\omega) \le -n \}\right)$$

$$= \lim_{n \to \infty} P\left(\{\omega \mid X(\omega) \le -n\}\right) = \lim_{n \to \infty} F(-n)$$

$$= \lim_{n \to -\infty} F(x) \text{ since } F \text{ is monotone increasing},$$

and

$$1 = P(\Omega) = P(\bigcup_{n=1}^{\infty} \{ \omega \mid X(\omega) \ge n \})$$

= $P\left(\lim_{n \to \infty} \{ \omega \mid X(\omega) \ge n \}\right)$
= $\lim_{n \to \infty} P(\{ \omega \mid X(\omega) \ge n \}) = \lim_{n \to \infty} F(n) = \lim_{x \to \infty} F(x),$

as claimed.

- ()

Proof (continued). Again by Continuity of Measure

$$0 = P(\emptyset) = P(\bigcap_{n=1}^{\infty} \{ \omega \mid X(\omega) \le -n \}) = P\left(\lim_{n \to \infty} \{ \omega \mid X(\omega) \le -n \}\right)$$
$$= \lim_{n \to \infty} P(\{\omega \mid X(\omega) \le -n \}) = \lim_{n \to \infty} F(-n)$$

$$= \lim_{n \to \infty} P\left(\{\omega \mid X(\omega) \le -n\}\right) = \lim_{n \to \infty} F(-n)$$

$$= \lim_{n \to -\infty} F(x) \text{ since } F \text{ is monotone increasing},$$

and

$$1 = P(\Omega) = P(\bigcup_{n=1}^{\infty} \{ \omega \mid X(\omega) \ge n \})$$

= $P\left(\lim_{n \to \infty} \{ \omega \mid X(\omega) \ge n \}\right)$
= $\lim_{n \to \infty} P(\{ \omega \mid X(\omega) \ge n \}) = \lim_{n \to \infty} F(n) = \lim_{x \to \infty} F(x),$

as claimed.

()

Lemma 4.6.B. If $F : \mathbb{R} \to [0, 1]$ is an increasing and right-continuous function with $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to-\infty} F(x) = 0$, then F is the distribution function of some random variable. Note: Though F is defined on \mathbb{R} , we denote $\lim_{x\to\infty} F(x) = F(\infty)$ and $\lim_{x\to-\infty} F(x) = F(-\infty)$.

Proof. We take $\Omega = \mathbb{R}$, $\mathcal{F} = \mathcal{B}(\mathbb{R})$ (the Borel sets in \mathbb{R}), and define $X(\omega) = \omega$ for $\omega \in \Omega$ (s X is the identity map on $\Omega = \mathbb{R}$). We use F to define a probability measure P; define P((a, b]) = F(b) = F(a) for all $a, b \in \mathbb{R}$ and define $P(\emptyset) = 0$. Then P is defined on all $(a, b] \subset \mathbb{R}$ and the set of all such (a, b] (along with \emptyset) form a semiring S.

Lemma 4.6.B. If $F : \mathbb{R} \to [0,1]$ is an increasing and right-continuous function with $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to-\infty} F(x) = 0$, then F is the distribution function of some random variable. Note: Though F is defined on \mathbb{R} , we denote $\lim_{x\to\infty} F(x) = F(\infty)$ and $\lim_{x\to-\infty} F(x) = F(-\infty)$.

Proof. We take $\Omega = \mathbb{R}$, $\mathcal{F} = \mathcal{B}(\mathbb{R})$ (the Borel sets in \mathbb{R}), and define $X(\omega) = \omega$ for $\omega \in \Omega$ (s X is the identity map on $\Omega = \mathbb{R}$). We use F to define a probability measure P; define P((a, b]) = F(b) = F(a) for all $a, b \in \mathbb{R}$ and define $P(\emptyset) = 0$. Then P is defined on all $(a, b] \subset \mathbb{R}$ and the set of all such (a, b] (along with \emptyset) form a semiring S. Notice that P is finitely additive on S: if

$$(a,b] = (a_1,b_1] \cup (a_2,b_2] \cup \cdots \cup (a_n,b_n]$$

(where, say, $a_1 = a$, $b_n = b$, and $a_i = b_{i-1}$ for i = 2, 3, ..., n) then...

Lemma 4.6.B. If $F : \mathbb{R} \to [0, 1]$ is an increasing and right-continuous function with $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to-\infty} F(x) = 0$, then F is the distribution function of some random variable. Note: Though F is defined on \mathbb{R} , we denote $\lim_{x\to\infty} F(x) = F(\infty)$ and $\lim_{x\to-\infty} F(x) = F(-\infty)$.

Proof. We take $\Omega = \mathbb{R}$, $\mathcal{F} = \mathcal{B}(\mathbb{R})$ (the Borel sets in \mathbb{R}), and define $X(\omega) = \omega$ for $\omega \in \Omega$ (s X is the identity map on $\Omega = \mathbb{R}$). We use F to define a probability measure P; define P((a, b]) = F(b) = F(a) for all $a, b \in \mathbb{R}$ and define $P(\emptyset) = 0$. Then P is defined on all $(a, b] \subset \mathbb{R}$ and the set of all such (a, b] (along with \emptyset) form a semiring S. Notice that P is finitely additive on S: if

$$(a,b] = (a_1,b_1] \cup (a_2,b_2] \cup \cdots \cup (a_n,b_n]$$

(where, say, $a_1 = a$, $b_n = b$, and $a_i = b_{i-1}$ for $i = 2, 3, \ldots, n$) then...

Lemma 4.6.B (continued 1)

Proof (continued). $P((a_1, b_1]) + P((a_2, b_2]) + \cdots P((a_n, b_n])$ $= (F(b_1) - F(a_1)) + (F(b_2) - F(a_2)) + \cdots + (F(b_n) - F(a_n))$ $= -F(a_1) + (F(b_1) - F(a_2)) + (F(b_2) - F(a_3)) + \cdots + (F(b_{n-1}) - F(a_n)) + F(b_n)$ $= F(b_n) - F(a_1) \text{ since } a_i = b_{i-1} \text{ for } i = 2, 3, \dots, n$ $= F(b) - F(a) \text{ since } a_1 = a \text{ and } b_n = b$ $= P((a, b_1) = P((a_1, b_1] \cup (a_2, b_2] \cup \cdots \cup (a_n, b_n]).$

In Exercise 4.6.A, it is to be shown that P is countably monotone on S(that is, if $E = (a, b] \in S$ and $\{E_k\}_{k=1}^{\infty}$ is a countable collection of sets in S such that $E \subset \bigcup_{k=1}^{\infty} E_k \in S$ then $P(E) \leq \sum_{k=1}^{\infty} P(E_k)$). So P is a premeasure on semiring S. By the Carathéodory-Hahn Theorem, there is a measure \overline{P} defined on the smallest σ -algebra containing S that extends Pand by the Carathéodory Theorem, since P is σ -finite, \overline{P} is unique. We also denote this measure as $\overline{P} = P$.

Lemma 4.6.B (continued 1)

Proof (continued). $P((a_1, b_1]) + P((a_2, b_2]) + \cdots P((a_n, b_n])$ $= (F(b_1) - F(a_1)) + (F(b_2) - F(a_2)) + \cdots + (F(b_n) - F(a_n))$ $= -F(a_1) + (F(b_1) - F(a_2)) + (F(b_2) - F(a_3)) + \cdots + (F(b_{n-1}) - F(a_n)) + F(b_n)$ $= F(b_n) - F(a_1) \text{ since } a_i = b_{i-1} \text{ for } i = 2, 3, \dots, n$ $= F(b) - F(a) \text{ since } a_1 = a \text{ and } b_n = b$ $= P((a, b_1) = P((a_1, b_1] \cup (a_2, b_2] \cup \cdots \cup (a_n, b_n]).$

In Exercise 4.6.A, it is to be shown that P is countably monotone on S (that is, if $E = (a, b] \in S$ and $\{E_k\}_{k=1}^{\infty}$ is a countable collection of sets in S such that $E \subset \bigcup_{k=1}^{\infty} E_k \in S$ then $P(E) \leq \sum_{k=1}^{\infty} P(E_k)$). So P is a premeasure on semiring S. By the Carathéodory-Hahn Theorem, there is a measure \overline{P} defined on the smallest σ -algebra containing S that extends P and by the Carathéodory Theorem, since P is σ -finite, \overline{P} is unique. We also denote this measure as $\overline{P} = P$.

Lemma 4.6.B (continued 2)

Proof (continued). (Notice that the smallest σ -algebra containing all subsets of \mathbb{R} of the form (a, b] is $\mathcal{B}(\mathbb{R})$, by Exercise 1.36 in Royden and Fitzpatrick.) So $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P)$ is a probability space. For $x \in \mathbb{R}$,

$$F(x) = F(x) - F(-\infty) \text{ since } F(-\infty) = \lim_{y \to -\infty} F(y) = 0$$

$$= F(x) - \lim_{y \to -\infty} F(y) = \lim_{y \to -\infty} (F(x) - F(y))$$

$$= \lim_{y \to \infty} P((y, x]) = \lim_{n \to -\infty} P((-n, x]) \text{ since } P \text{ is monotone}$$

and $P((y, x])$ is a decreasing function of y so the limit can
be evaluated using any sequence of values $\{y_n\} \to -\infty$

$$= P\left(\lim_{n \to -\infty} (-n, x]\right) \text{ by Continuity of Measure since } \{(-n, x]\}$$

is an increasing sequence of sets (for n sufficiently large)

$$= P((-\infty, x]) = P(\omega \mid \omega \le x) = P(\omega \mid X(\omega) \le x\} \text{ since } X(\omega) = \omega$$

so F is the distribution of random variable X, as claimed.

()

Lemma 4.6.B (continued 2)

Proof (continued). (Notice that the smallest σ -algebra containing all subsets of \mathbb{R} of the form (a, b] is $\mathcal{B}(\mathbb{R})$, by Exercise 1.36 in Royden and Fitzpatrick.) So $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P)$ is a probability space. For $x \in \mathbb{R}$,

$$F(x) = F(x) - F(-\infty) \text{ since } F(-\infty) = \lim_{y \to -\infty} F(y) = 0$$

$$= F(x) - \lim_{y \to -\infty} F(y) = \lim_{y \to -\infty} (F(x) - F(y))$$

$$= \lim_{y \to \infty} P((y, x]) = \lim_{n \to -\infty} P((-n, x]) \text{ since } P \text{ is monotone}$$

and $P((y, x])$ is a decreasing function of y so the limit can
be evaluated using any sequence of values $\{y_n\} \to -\infty$

$$= P\left(\lim_{n \to -\infty} (-n, x]\right) \text{ by Continuity of Measure since } \{(-n, x]\}$$

is an increasing sequence of sets (for n sufficiently large)

$$= P((-\infty, x]) = P(\omega \mid \omega \le x) = P(\omega \mid X(\omega) \le x\} \text{ since } X(\omega) = \omega,$$

so F is the distribution of random variable X, as claimed.

Lemma 4.6.C. Random variable X is continuous if and only if $P({X = x}) = 0$ for all $x \in \mathbb{R}$.

Proof. Let *F* be the distribution function of *X*:

 $F(x) = P(\{\omega \mid X(\omega) \le x\}) = P(\{\omega \mid \omega \le x\}) = P((-\infty, x]).$

Then P((a, b]) = F(b) - F(a) from (*). For $n \in \mathbb{N}$, consider $\{(b - 1/n, b]\}_{n=1}^{\infty}$.

Lemma 4.6.C. Random variable X is continuous if and only if $P({X = x}) = 0$ for all $x \in \mathbb{R}$.

Proof. Let *F* be the distribution function of *X*:

$$F(x) = P(\{\omega \mid X(\omega) \le x\}) = P(\{\omega \mid \omega \le x\}) = P((-\infty, x]).$$

Then P((a, b]) = F(b) - F(a) from (*). For $n \in \mathbb{N}$, consider $\{(b - 1/n, b]\}_{n=1}^{\infty}$. This is a decreasing sequence of sets with $\lim_{n\to\infty} (b - 1/n, b] = \{b\}$, so by Continuity of Measure P (Proposition 17.2(ii) of Royden and Fitzpatrick),

$$P(\{b\}) = P\left(\lim_{n \to \infty} (b - 1/n, b]\right) = \lim_{n \to \infty} P((b - 1/n, b])$$
$$= \lim_{n \to \infty} F(b) - F(b - 1/n).$$

Lemma 4.6.C. Random variable X is continuous if and only if $P({X = x}) = 0$ for all $x \in \mathbb{R}$.

Proof. Let *F* be the distribution function of *X*:

$$F(x) = P(\{\omega \mid X(\omega) \le x\}) = P(\{\omega \mid \omega \le x\}) = P((-\infty, x]).$$

Then P((a, b]) = F(b) - F(a) from (*). For $n \in \mathbb{N}$, consider $\{(b - 1/n, b]\}_{n=1}^{\infty}$. This is a decreasing sequence of sets with $\lim_{n\to\infty} (b - 1/n, b] = \{b\}$, so by Continuity of Measure P (Proposition 17.2(ii) of Royden and Fitzpatrick),

$$P(\{b\}) = P\left(\lim_{n \to \infty} (b - 1/n, b]\right) = \lim_{n \to \infty} P((b - 1/n, b])$$
$$= \lim_{n \to \infty} F(b) - F(b - 1/n).$$

Lemma 4.6.C (continued)

Lemma 4.6.C. Random variable X is continuous if and only if $P({X = x}) = 0$ for all $x \in \mathbb{R}$.

Proof (continued). Now *F* is left-continuous on \mathbb{R} if and only if $\lim_{n\to\infty} F(b-1/n) = F(b)$ for all $b \in \mathbb{R}$; that is, if and only if *F* is continuous at all $b \in \mathbb{R}$ (since we already know by definition that *F* is right-continuous). So *F* is continuous if and only if $P(\{b\}) = 0$ for all $b \in \mathbb{R}$. That is, *X* is continuous if and only if P(X = x) = 0 for all $x \in \mathbb{R}$, as claimed.