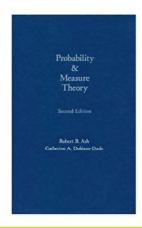
Real Analysis

Chapter 4. Basic Concepts of Probability

4.8. Independent Random Variables—Proofs of Theorems



Real Analysis

February 8, 2019 1 / 13

Real Analysis

February 8, 2019 3 / 13

Theorem 1.3.9 (continued 1)

Theorem 1.3.9. The Monotone Class Theorem.

Let \mathcal{F}_0 be a field of subsets of Ω and \mathcal{C} a class of subsets of Ω that is monotone. If $\mathcal{C} \supset \mathcal{F}_0$, then $\mathcal{C} \supset \sigma(\mathcal{F}_0)$, the minimal σ -filed over \mathcal{F}_0 .

Proof (continued). Also, $(\bigcup_{n=1}^{\infty} B_n)^c = \bigcap_{n=1}^{\infty} B_n^c \in \mathcal{M}$ since $B_1^c \supset B_2^c \supset \cdots$ and \mathcal{M} is monotone. Next, $A \cap (\bigcup_{n=1}^{\infty} B_n)^c = A \cap (\bigcap_{n=1}^{\infty} B_n^c) = \bigcap_{n=1}^{\infty} (A \cap B_n^c) \in \mathcal{M}$ since $(A \cap B_1^c) \supset (A \cap B_2^c) \supset \cdots$ and \mathcal{M} is monotone.

If $\{B_1\}_{n=1}^{\infty} \subset \mathcal{M}_A$ with $B_1 \supset B_2 \supset \cdots$ then $A \cap B_n, A \cap B_n^c, A^c \cap B_n \in \mathcal{M}$ for all $n \in \mathbb{N}$. Then $\bigcap_{n=1}^{\infty} B_n \in \mathcal{M}$ since \mathcal{M} is monotone, and $A \cap (\bigcap_{n=1}^{\infty} B_n) = \bigcap_{n=1}^{\infty} (A \cap B_n) \in \mathcal{M}$ since $(A \cap B_1) \supset (A \cap B_2) \supset \cdots$ and \mathcal{M} is monotone. Similarly, $A^c \cap (\bigcap_{n=1}^{\infty} B_n) = \bigcap_{n=1}^{\infty} (A^c \cap B_n) \in \mathcal{M}$. Also, $(cap_{n=1}^{\infty}B_n)^c = \bigcup_{n=1}^{\infty}B_n^c \in \mathcal{M}$ since $B_1^c \subset B_2^c \subset \cdots$ and \mathcal{M} is monotone. Next, $A \cap (\bigcap_{n=1}^{\infty} B_n)^c = A \cap (\bigcup_{n=1}^{\infty} B_n^c) = \bigcup_{n=1}^{\infty} (A \cap B_n^c) \in \mathcal{M}$ since $(A \cap B_1^c) \subset (A \cap B_2^c) \subset \cdots$ and \mathcal{M} is monotone. Therefore, \mathcal{M}_A is a monotone class.

Theorem 1.3.9. The Monotone Class Theorem

Theorem 1.3.9. The Monotone Class Theorem.

Let \mathcal{F}_0 be a field of subsets of Ω and \mathcal{C} a class of subsets of Ω that is monotone. If $\mathcal{C} \supset \mathcal{F}_0$, then $\mathcal{C} \supset \sigma(\mathcal{F}_0)$, the minimal σ -filed over \mathcal{F}_0 .

Proof. Let $\mathcal{F} = \sigma(\mathcal{F}_0)$ and let \mathcal{M} be the smallest monotone class containing all sets of \mathcal{F}_0 . We will show that $\mathcal{M} = \mathcal{F}$; that is, the smallest monotone class containing field \mathcal{F}_0 and the smallest σ -field over field \mathcal{F}_0 are the same.

Let $A \in \mathcal{M}$ be fixed. Define

$$\mathcal{M}_A = \{B \in \mathcal{M} \mid A \cap B, A \cap B^c, A^c \cap B \in \mathcal{M}\} \subset \mathcal{M}.$$

If $\{B_n\}_{n=1}^{\infty} \subset \mathcal{M}_A$ with $B_1 \subset B_2 \subset \cdots$ then $A \cap B_n, A \cap B_n^c, A^c \cap B_n^c \in \mathcal{M}$ for all $n \in \mathbb{N}$. Then $\bigcup_{n=1}^{\infty} B_n \in \mathcal{M}$ since \mathcal{M} is monotone, and $A \cap (\bigcup_{n=1}^{\infty} B_n) = \bigcup_{n=1}^{\infty} (A \cap B_n) \in \mathcal{M}$ since $(A \cap B_1) \subset (A \cap B_2) \subset \cdots$ and \mathcal{M} is monotone. Similarly, $A^c \cap (\bigcup_{n=1}^{\infty} B_n) = \bigcup_{n=1}^{\infty} (A^c \cap B_n) \in \mathcal{M}$.

Theorem 1.3.9 (continued 2)

Theorem 1.3.9. The Monotone Class Theorem.

Let \mathcal{F}_0 be a field of subsets of Ω and \mathcal{C} a class of subsets of Ω that is monotone. If $\mathcal{C} \supset \mathcal{F}_0$, then $\mathcal{C} \supset \sigma(\mathcal{F}_0)$, the minimal σ -filed over \mathcal{F}_0 .

Proof (continued). If $A \in \mathcal{F}_0$ then $A^c \in \mathcal{F}_0$ since \mathcal{F}_0 is a field, and for any $B \in \mathcal{F}_0$ we must also have $A \cap B$, B^c , $A \cap B^c$, $A^c \cap B \in \mathcal{F}_0$ since \mathcal{F}_0 is a field. Since B satisfies these conditions, then $B \in \mathcal{M}_A$; that is, if $A \in \mathcal{F}_0$ then $\mathcal{F}_0 \subset \mathcal{M}_A$. Since \mathcal{M} is the smallest monotone monotone class containing all sets in \mathcal{F}_0 and \mathcal{M}_A is a monotone class containing \mathcal{F}_0 (if $A \in \mathcal{F}_0$) then we must have $\mathcal{M} \subset \mathcal{M}_A$. Since $\mathcal{M}_A \subset \mathcal{M}$ by the definition of $\mathcal{M}_{!}$, then we have $\mathcal{M}_{A} = \mathcal{M}$ for any $A \in \mathcal{F}_{0}$. So for any $B \in \mathcal{M} = \mathcal{M}_A$ we have $A \cap B$, $A \cap B^c$, $A^c \cap B \in \mathcal{M} = \mathcal{M}_A$, provided $A \in \mathcal{F}_0$. That is, $A \in \mathcal{F}_0$ implies $A \in \mathcal{M}_B$, so that $\mathcal{F}_0 \subset \mathcal{M}_B$. But as just shown for \mathcal{M}_A , \mathcal{M}_B is also a monotone class (regardless of whether $B \in \mathcal{F}_0$ or not), and so \mathcal{M}_B is a monotone class containing \mathcal{F}_0 so that $\mathcal{M}_B \supset \mathcal{M}$ by the minimality definition of \mathcal{M} . But $\mathcal{M}_B \subset \mathcal{M}$ by the definition of \mathcal{M}_B , so that $\mathcal{M}_B = \mathcal{M}$ for any $B \in \mathcal{M}$.

Theorem 4.8.3

Theorem 1.3.9 (continued 3)

Proof (continued). Next, for any $A, B \in \mathcal{M} = \mathcal{M}_A$, we have (by the definition of \mathcal{M}_A) $A \cap B$, $A \cap B^c$, $A^c \cap B \in \mathcal{M} = \mathcal{M}_A$ so that \mathcal{M} is closed under complements (since by definition field $\Omega \in \mathcal{F}_0$ so for $A \in \mathcal{M}$, $A^c \cap \Omega = A^c \in \mathcal{M}$) and finite intersections. That is, \mathcal{M} is a field. We also claim that \mathcal{M} is a σ -field. Let $A_1, A_2, \ldots \in \mathcal{M}$. Then $A_1 \subset (A_1 \cup A_2) \subset (A_1 \cup A_2 \cup A_3) \subset$ and since \mathcal{M} is a monotone class, $\bigcup_{n=1}^{\infty} A_n = \bigcup_{k=1}^{\infty} (A_1 \cup A_2 \cup \cdots \cup A_k) \in \mathcal{M}$. Also, $A_1 \supset (A_1 \cup A_2) \supset (A_1 \cap A_2 \cap A_3) \supset \cdots$ and since \mathcal{M} is a monotone class $\bigcap_{n=1}^{\infty} A_n = \bigcap_{k=1}^{\infty} (A_1 \cap A_2 \cap \cdots \cap A_k) \in \mathcal{M}$. That is, \mathcal{M} is a field closed under countable unions (and countable intersections). So \mathcal{M} is a σ -field which contains \mathcal{F}_0 . Since $\mathcal{F} = \sigma(\mathcal{F}_0)$ is the minimal σ -field containing \mathcal{F}_0 , then $\mathcal{F} \subset \mathcal{M}$. Since \mathcal{F} is a σ -field, then it is also a monotone class (containing \mathcal{F}_0), and by the minimality of monotone class \mathcal{M} , we have $\mathcal{M} \subset \mathcal{F}$. Therefore $\mathcal{M} = \mathcal{F}$.

Since \mathcal{C} is a monotone class of subsets of Ω containing \mathcal{F}_0 , then $\mathcal{C} \supset \mathcal{M} \supset \mathcal{F}_0$, and so we have $\mathcal{C} \supset \mathcal{M} = \mathcal{F} = \sigma(\mathcal{F}_0)$, as claimed

 $t = J' = \theta(J_0)$, as claimed.

6 / 13

Theorem 4.8.3

Theorem 4.8.3 (continued 1)

Proof (continued). Now suppose

 $F(x_1, x_2, ..., x_n) = F_1(x_1)F_2(x_2)\cdots F_n(x_n)$ for all $x_1, x_2, ..., x_n \in \mathbb{R}$. Let $a = (a_1, a_2, ..., a_n), b = (b_1, b_2, ..., b_n) \in \mathbb{R}^n$ with $a \le b$ (that is, $a_i \le b_i$ for i = 1, 2, ..., n). Then

$$(a,b] = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid a_i < x_i \le b_1 \text{ for } i = 1, 2, \dots, n\}$$

(see page 26 of the text). So

$$P_X((a,b]) = P(\{X \in (a,b]\})$$

$$= P(\{a_1 < X_1 \le b_1, a_2 < X_2 \le b_2, \dots, a_n < X_n \le b_n\})$$

$$= F((a,b]) = (F_1(b_1) - F_1(a_1))(F_2(b_2) - F_2(a_2)) \cdots$$

$$(F_n(b_n) - F_n(a_n)) \text{by Example 1.4.10(a) of the text}$$
and the hypothesis on F

$$= P_{X_1}(a_1,b_1])P_{X_2}((a_2,b_2]) \cdots P_{X_n}((a_n,b_n]).$$

Theorem 4.8.3

Theorem 4.8.3. Let X_1, X_2, \ldots, X_n be random variables on (Ω, \mathcal{F}, P) . Let F_i by the distribution function of X_i , $i=1,2,\ldots,n$ (so $F_i(x_i)=P(\{X_i\leq x_i\})$) and F the distribution function of $X=(X_1,X_2,\ldots,X_n)$ (that is, $F(x_1,x_2,\ldots,x_n)=P(\{X_1\leq x_1,X_2\leq x_2,\ldots,X_n\leq x_n\})$). Then X_1,X_2,\ldots,X_n are independent if and only if $F(x_1,x_2,\ldots,x_n)=F_1(x_1)F_2(x_2)\cdots F_n(x_n)$ for all $x_1,x_2,\ldots,x_n\in\mathbb{R}$.

Proof. If X_1, X_2, \dots, X_n are independent then

$$F(x_1, x_2, \dots, x_n) = P(\{X \le x_1, X_2 \le x_2, \dots, X_n \le x_n\})$$

$$= P(\{X_1 \le x_1\}) P(\{X_2 \le x_2\}) \cdots P(\{X_n \le x_n\}) = F_1(x_1) F_2(x_2) \cdots F_n(x_n),$$
as claimed.

Real Analysis February 8, 2019 7 / 13

Theorem 4

Theorem 4.8.3 (continued 2)

Proof (continued). So

$$P(\{X_1 \in B_1, X_2 \in B_2, \dots, X_n \in B_n\})$$

= $P(\{X_1 \in B_1\})P(\{X_2 \in B_2\}) \cdots P(\{X_n \in B_n\})$ (1)

holds when each B_i is of the form $B_i = (a_i, b_i] \subset \mathbb{R}$.

Now fix the intervals B_2, B_3, \ldots, B_n and let $\mathcal C$ be the collection of sets $B_1 \in \mathcal B(\mathbb R)$ for which equation (1) holds (so B_1 need not be of the form $(a_1,b_1]$ here, but $\mathcal C$ does include all intervals of this form). Suppose $\{A_n\}_{n=1}^\infty \subset \mathcal C$ and $A_1 \subset A_2 \subset \cdots$. Then

$$\{X_1 \in \bigcup_{m=1}^k A_m, X_2 \in B_2, \dots, X_n \in B_n\} = \{X_1 \in A_k, X_2 \in B_2, \dots, X_n \in B_n\}$$
 and since $A_k \in \mathcal{C}$ then

$$P\left(\left\{X_{1} \in \bigcup_{m=1}^{k} A_{m}, X_{2} \in B_{2}, \dots, X_{n} \in B_{n}\right\}\right)$$

$$= P(\left\{X_{1} \in A_{k}, X_{2} \in B_{2}, \dots, X_{n} \in B_{n}\right\})$$

Theorem 4.8.3 (continued 3)

Proof (continued). ...

$$= P(\{X_1 \in A_k\}) P(\{X_2 \in B_2\}) \cdots P(\{X_n \in B_n\})$$

$$= P\left(\{X_1 \in \bigcup_{m=1}^k A_m\}\right) P(\{X_2 \in B_2\}) \cdots P(\{X_n \in B_n\}).$$

Now

$$\left\{X_1 \in \bigcup_{m=1}^k A_m, X_2 \in B_2, \dots, X_n \in B_n\right\}$$
$$\subset \left\{X_1 \in \bigcup_{m=1}^{k+1} A_m, X_2 \in B_2, \dots, X_n \in B_n\right\}$$

so this sequence of sets of events indexed by k is ascending so that

$$\lim_{k \to \infty} \left\{ X_1 \in \bigcup_{m=1}^k A_m, X_2 \in B_2, \dots, X_n \in B_n \right\}$$
$$= \left\{ X_1 \in \bigcup_{m=1}^k A_m, X_2 \in B_2, \dots, X_n \in B_n \right\}$$

and since probability measure P is continuous (Proposition 17.2(i) of Royden and Fitzpatrick)...

Real Analysis

Theorem 4.8.3 (continued 5)

Proof (continued). Similarly, if $\{A_m\}_{m=1}^{\infty} \subset \mathcal{C}$ with $A_1 \supset A_2 \supset$, we have by the continuity of probability measure P (Proposition 17.2(ii) of Royden and Fitzpatrick) that $\bigcap_{m=1}^{\infty} A_m \in \mathcal{C}$. So collection \mathcal{C} for which (1) holds is a monotone class. Now if B_1 is a finite union of disjoint "right-semiclosed intervals," $B_1 = (a_1^1, b_1^1] \cup (a_1^2, b_1^2] \cup \cdots \cup (a_1^\ell, b_1^\ell]$ then

$$\{X_1 \in B_1, X_2 \in B_2, \dots, X_n \in B_n\} = \{X_1 \in (a_1^1, b_1^1], X_2 \in B_2, \dots X_n \in B_n\}$$

$$\cup \{X_1 \in (a_1^2, b_1^2], X_2 \in B_2, \dots X_n \in B_n\} \cup \dots$$

$$\cup \{X_1 \in (a_1^\ell, b_1^\ell], X_2 \in B_2, \dots X_n \in B_n\},$$

so by finite additivity of probability measure P,

$$P(\{X_1 \in B_1, X_2 \in B_2, \dots, X_n \in B_n\})$$

$$= P(\{X_1 \in (a_1^1, b_1^1], X_2 \in B_2, \dots, X_n \in B_n\})$$

$$+P(\{X_1 \in (a_1^2, b_1^2], X_2 \in B_2, \dots, X_n \in B_n\}) + \dots$$

$$+P(\{X_1 \in (a_1^\ell, b_1^\ell], X_2 \in B_2, \dots, X_n \in B_n\})$$

Theorem 4.8.3 (continued 4)

Proof (continued). ...

$$P(\{X_{1} \in \cup_{m=1}^{\infty} A_{m}, X_{2} \in B_{2}, \dots, X_{n} \in B_{n}\})$$

$$= P\left(\lim_{k \to \infty} \left\{X_{1} \in \cup_{m=1}^{k} A_{m}, X_{2} \in B_{2}, \dots, X_{n} \in B_{n}\right\}\right)$$

$$= P\left(\lim_{k \to \infty} \left\{X_{1} \in A_{k}, X_{2} \in B_{2}, \dots, X_{n} \in B_{n}\right\}\right)$$

$$= \lim_{k \to \infty} P(\{X_{1} \in A_{k}, X_{2} \in B_{2}, \dots, X_{n} \in B_{n}\})$$

$$= \lim_{k \to \infty} P(\{X_{1} \in A_{k}\})P(\{X_{2} \in B_{2}\} \cdots P(\{X_{n} \in B_{n}\}) \text{ since } A_{k} \in \mathcal{C}$$

$$= P\left(\lim_{k \to \infty} \{X_{1} \in A_{k}\}\right) P(\{X_{2} \in B_{2}\} \cdots P(\{X_{n} \in B_{n}\})$$

$$= P(\{X_{1} \in \cup_{m=1}^{\infty} A_{m}\}) P(\{X_{2} \in B_{2}\} \cdots P(\{X_{n} \in B_{n}\})$$

and so $\bigcup_{m=1}^{\infty} A_m \in \mathcal{C}$.

Theorem 4.8.3 (continued 6)

Proof (continued). ...

$$= (P(\lbrace X_1 \in (a_1^1, b_1^1]\rbrace) + P(\lbrace X_1 \in (a_1^2, b_1^2]\rbrace) + \cdots + P(\lbrace X_1 \in (a_1^\ell, b_1^\ell]\rbrace)) P(\lbrace X_2 \in B_2\rbrace) \cdots P(\lbrace X_n \in B_n\rbrace)$$

$$= P(\lbrace X_1 \in B_1\rbrace) P(\lbrace X_2 \in B_2\rbrace) \cdots P(\lbrace X_n \in B_n\rbrace),$$

so \mathcal{C} includes the field of all finite unions of right-semiclosed intervals. So, by the Monotone Class Theorem, C includes the σ -field generated by the field of all finite unions of right-semiclosed intervals (which, by the Royden and Fitzpatrick Exercise 1.36 is the Borel sets in \mathbb{R}). So (1) holds if B_1 is any set. We can now inductively show that (1) holds for any B_2, B_3, \dots, B_n Borel sets. (As the text says, "Explicitly, we prove by induction that if B_1, \ldots, B_i are arbitrary Borel sets and B_{i+1}, \ldots, B_n are right-semiclosed intervals, then (1) holds for B_1, \ldots, B_n .")