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Theorem 1.3.9. The Monotone Class Theorem.
Let F0 be a field of subsets of Ω and C a class of subsets of Ω that is
monotone. If C ⊃ F0, then C ⊃ σ(F0), the minimal σ-filed over F0.

Proof. Let F = σ(F0) and let M be the smallest monotone class
containing all sets of F0. We will show that M = F ; that is, the smallest
monotone class containing field F0 and the smallest σ-field over field F0

are the same.

Let A ∈M be fixed. Define

MA = {B ∈M | A ∩ B,A ∩ Bc ,Ac ∩ B ∈M} ⊂M.

If {Bn}∞n=1 ⊂MA with B1 ⊂ B2 ⊂ · · · then A ∩ Bn,A ∩ Bc
n ,Ac ∩ Bc

n ∈M
for all n ∈ N. Then ∪∞n=1Bn ∈M since M is monotone, and
A ∩ (∪∞n=1Bn) = ∪∞n=1(A ∩ Bn) ∈M since (A ∩ B1) ⊂ (A ∩ B2) ⊂ · · · and
M is monotone. Similarly, Ac ∩ (∪∞n=1Bn) = ∪∞n=1(A

c ∩ Bn) ∈M.
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Theorem 1.3.9. The Monotone Class Theorem

Theorem 1.3.9 (continued 1)

Theorem 1.3.9. The Monotone Class Theorem.
Let F0 be a field of subsets of Ω and C a class of subsets of Ω that is
monotone. If C ⊃ F0, then C ⊃ σ(F0), the minimal σ-filed over F0.

Proof (continued). Also, (∪∞n=1Bn)
c = ∩∞n=1B

c
n ∈M since

Bc
1 ⊃ Bc

2 ⊃ · · · and M is monotone. Next,
A ∩ (∪∞n=1Bn)

c = A ∩ (∩∞n=1B
c
n ) = ∩∞n=1(A ∩ Bc

n ) ∈M since
(A ∩ Bc

1 ) ⊃ (A ∩ Bc
2 ) ⊃ · · · and M is monotone.

If {B1}∞n=1 ⊂MA with B1 ⊃ B2 ⊃ · · · then A ∩ Bn,A ∩ Bc
n ,Ac ∩ Bn ∈M

for all n ∈ N. Then ∩∞n=1Bn ∈M since M is monotone, and
A ∩ (∩∞n=1Bn) = ∩∞n=1(A ∩ Bn) ∈M since (A ∩ B1) ⊃ (A ∩ B2) ⊃ · · · and
M is monotone. Similarly, Ac ∩ (∩∞n=1Bn) = ∩∞n=1(A

c ∩ Bn) ∈M.

Also,
(cap∞n=1Bn)

c = ∪∞n=1B
c
n ∈M since Bc

1 ⊂ Bc
2 ⊂ · · · and M is monotone.

Next, A ∩ (∩∞n=1Bn)
c = A ∩ (∪∞n=1B

c
n ) = ∪∞n=1(A ∩ Bc

n ) ∈M since
(A ∩ Bc

1 ) ⊂ (A ∩ Bc
2 ) ⊂ · · · and M is monotone. Therefore, MA is a

monotone class.
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Theorem 1.3.9. The Monotone Class Theorem

Theorem 1.3.9 (continued 2)

Theorem 1.3.9. The Monotone Class Theorem.
Let F0 be a field of subsets of Ω and C a class of subsets of Ω that is
monotone. If C ⊃ F0, then C ⊃ σ(F0), the minimal σ-filed over F0.

Proof (continued). If A ∈ F0 then Ac ∈ F0 since F0 is a field, and for
any B ∈ F0 we must also have A ∩ B,Bc ,A ∩ Bc ,Ac ∩ B ∈ F0 since F0 is
a field. Since B satisfies these conditions, then B ∈MA; that is, if
A ∈ F0 then F0 ⊂MA. Since M is the smallest monotone monotone
class containing all sets in F0 and MA is a monotone class containing F0

(if A ∈ F0) then we must have M⊂MA. Since MA ⊂M by the
definition of M!, then we have MA = M for any A ∈ F0. So for any
B ∈M = MA we have A ∩ B,A ∩ Bc ,Ac ∩ B ∈M = MA, provided
A ∈ F0. That is, A ∈ F0 implies A ∈MB , so that F0 ⊂MB . But as just
shown for MA, MB is also a monotone class (regardless of whether
B ∈ F0 or not), and so MB is a monotone class containing F0 so that
MB ⊃M by the minimality definition of M. But MB ⊂M by the
definition of MB , so that MB = M for any B ∈M.
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Theorem 1.3.9. The Monotone Class Theorem

Theorem 1.3.9 (continued 3)

Proof (continued). Next, for any A,B ∈M = MA, we have (by the
definition of MA) A ∩ B,A ∩ Bc ,Ac ∩ B ∈M = MA so that M is closed
under complements (since by definition field Ω ∈ F0 so for A ∈M,
Ac ∩Ω = Ac ∈M) and finite intersections. That is, M is a field. We also
claim that M is a σ-field. Let A1,A2, . . . ∈M. Then
A1 ⊂ (A1 ∪ A2) ⊂ (A1 ∪ A2 ∪ A3) ⊂ and since M is a monotone class,
∪∞n=1An = ∪∞k=1(A1 ∪ A2 ∪ · · · ∪ Ak) ∈M. Also,
A1 ⊃ (A1 ∪ A2) ⊃ (A1 ∩ A2 ∩ A3) ⊃ · · · and since M is a monotone class
∩∞n=1An = ∩∞k=1(A1 ∩ A2 ∩ · · · ∩ Ak) ∈M. That is, M is a field closed
under countable unions (and countable intersections). So M is a σ-field
which contains F0.

Since F = σ(F0) is the minimal σ-field containing F0,
then F ⊂M. Since F is a σ-field, then it is also a monotone class
(containing F0), and by the minimality of monotone class M, we have
M⊂ F . Therefore M = F .

Since C is a monotone class of subsets of Ω containing F0, then
C ⊃M ⊃ F0, and so we have C ⊃M = F = σ(F0), as claimed.
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Theorem 4.8.3

Theorem 4.8.3

Theorem 4.8.3. Let X1,X2, . . . ,Xn be random variables on (Ω,F ,P).
Let Fi by the distribution function of Xi , i = 1, 2, . . . , n (so
Fi (xi ) = P({Xi ≤ xi})) and F the distribution function of
X = (X1,X2, . . . ,Xn) (that is,
F (x1, x2, . . . , xn) = P({X1 ≤ x1,X2 ≤ x2, . . . ,Xn ≤ xn})). Then
X1,X2, . . . ,Xn are independent if and only if
F (x1, x2, . . . , xn) = F1(x1)F2(x2) · · ·Fn(xn) for all x1, x2, . . . , xn ∈ R.

Proof. If X1,X2, . . . ,Xn are independent then

F (x1, x2, . . . , xn) = P({X ≤ x1,X2 ≤ x2, . . . ,Xn ≤ xn})

= P({X1 ≤ x1})P({X2 ≤ x2}) · · ·P({Xn ≤ xn}) = F1(x1)F2(x2) · · ·Fn(xn),

as claimed.
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Theorem 4.8.3

Theorem 4.8.3 (continued 1)

Proof (continued). Now suppose

F (x1, x2, . . . , xn) = F1(x1)F2(x2) · · ·Fn(xn) for all x1, x2, . . . , xn ∈ R. Let
a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Rn with a ≤ b (that is, ai ≤ bi

for i = 1, 2, . . . , n). Then

(a, b] = {(x1, x2, . . . , xn) ∈ Rn | ai < xi ≤ b1 for i = 1, 2, . . . , n}

(see page 26 of the text). So

PX ((a, b]) = P({X ∈ (a, b]})
= P({a1 < X1 ≤ b1, a2 < X2 ≤ b2, . . . , an < Xn ≤ bn})
= F ((a, b]) = (F1(b1)− F1(a1))(F2(b2)− F2(a2)) · · ·

(Fn(bn)− Fn(an))by Example 1.4.10(a) of the text

and the hypothesis on F

= PX1(a1, b1])PX2((a2, b2]) · · ·PXn((an, bn]).
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Theorem 4.8.3

Theorem 4.8.3 (continued 2)

Proof (continued). So

P({X1 ∈ B1,X2 ∈ B2, . . . ,Xn ∈ Bn})

= P({X1 ∈ B1})P({X2 ∈ B2}) · · ·P({Xn ∈ Bn}) (1)

holds when each Bi is of the form Bi = (ai , bi ] ⊂ R.

Now fix the intervals B2,B3, . . . ,Bn and let C be the collection of sets
B1 ∈ B(R) for which equation (1) holds (so B1 need not be of the form
(a1, b1] here, but C does include all intervals of this form). Suppose
{An}∞n=1 ⊂ C and A1 ⊂ A2 ⊂ · · · .

Then

{X1 ∈ ∪k
m=1Am,X2 ∈ B2, . . . ,Xn ∈ Bn} = {X1 ∈ Ak ,X2 ∈ B2, . . . ,Xn ∈ Bn}

and since Ak ∈ C then

P
({

X1 ∈ ∪k
m=1Am,X2 ∈ B2, . . . ,Xn ∈ Bn

})
= P({X1 ∈ Ak ,X2 ∈ B2, . . . ,Xn ∈ Bn})
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Theorem 4.8.3

Theorem 4.8.3 (continued 3)

Proof (continued). . . .

= P({X1 ∈ Ak})P({X2 ∈ B2}) · · ·P({Xn ∈ Bn})

= P
({

X1 ∈ ∪k
m=1Am

})
P({X2 ∈ B2}) · · ·P({Xn ∈ Bn}).

Now {
X1 ∈ ∪k

m=1Am,X2 ∈ B2, . . . ,Xn ∈ Bn

}
⊂

{
X1 ∈ ∪k+1

m=1Am,X2 ∈ B2, . . . ,Xn ∈ Bn

}
so this sequence of sets of events indexed by k is ascending so that

lim
k→∞

{
X1 ∈ ∪k

m=1Am,X2 ∈ B2, . . . ,Xn ∈ Bn

}
=

{
X1 ∈ ∪k

m=1Am,X2 ∈ B2, . . . ,Xn ∈ Bn

}
and since probability measure P is continuous (Proposition 17.2(i) of
Royden and Fitzpatrick). . .
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Theorem 4.8.3 (continued 3)

Proof (continued). . . .
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Theorem 4.8.3

Theorem 4.8.3 (continued 4)

Proof (continued). . . .

P ({X1 ∈ ∪∞m=1Am,X2 ∈ B2, . . . ,Xn ∈ Bn})

= P

(
lim

k→∞

{
X1 ∈ ∪k

m=1Am,X2 ∈ B2, . . . ,Xn ∈ Bn

})
= P

(
lim

k→∞
{X1 ∈ Ak ,X2 ∈ B2, . . . ,Xn ∈ Bn}

)
= lim

k→∞
P ({X1 ∈ Ak ,X2 ∈ B2, . . . ,Xn ∈ Bn})

= lim
k→∞

P({X1 ∈ Ak})P({X2 ∈ B2} · · ·P({Xn ∈ Bn}) since Ak ∈ C

= P

(
lim

k→∞
{X1 ∈ Ak}

)
P({X2 ∈ B2} · · ·P({Xn ∈ Bn}

= P ({X1 ∈ ∪∞m=1Am}) P({X2 ∈ B2} · · ·P({Xn ∈ Bn})

and so ∪∞m=1Am ∈ C.
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Theorem 4.8.3

Theorem 4.8.3 (continued 5)

Proof (continued). Similarly, if {Am}∞m=1 ⊂ C with A1 ⊃ A2 ⊃, we have
by the continuity of probability measure P (Proposition 17.2(ii) of Royden
and Fitzpatrick) that ∩∞m=1Am ∈ C. So collection C for which (1) holds is
a monotone class. Now if B1 is a finite union of disjoint “right-semiclosed
intervals,” B1 = (a1

1, b
1
1] ∪· (a2

1, b
2
1] ∪· · · · ∪· (a`

1, b
`
1] then

{X1 ∈ B1,X2 ∈ B2, . . . ,Xn ∈ Bn} = {X1 ∈ (a1
1, b

1
1],X2 ∈ B2, . . . Xn ∈ Bn}

∪· {X1 ∈ (a2
1, b

2
1],X2 ∈ B2, . . . Xn ∈ Bn} ∪· · · ·

∪· {X1 ∈ (a`
1, b

`
1],X2 ∈ B2, . . . Xn ∈ Bn},

so by finite additivity of probability measure P,

P({X1 ∈ B1,X2 ∈ B2, . . . ,Xn ∈ Bn})
= P({X1 ∈ (a1

1, b
1
1],X2 ∈ B2, · · · ,Xn ∈ Bn})

+P({X1 ∈ (a2
1, b

2
1],X2 ∈ B2, . . . Xn ∈ Bn}) + · · ·

+P({X1 ∈ (a`
1, b

`
1],X2 ∈ B2, . . . Xn ∈ Bn})
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Theorem 4.8.3 (continued 5)
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Theorem 4.8.3

Theorem 4.8.3 (continued 6)

Proof (continued). . . .

=
(
P({X1 ∈ (a1

1, b
1
1]}) + P({X1 ∈ (a2

1, b
2
1]}) + · · ·

+P({X1 ∈ (a`
1, b

`
1]})

)
P({X2 ∈ B2}) · · ·P({Xn ∈ Bn})

= P({X1 ∈ B1})P({X2 ∈ B2}) · · ·P({Xn ∈ Bn}),

so C includes the field of all finite unions of right-semiclosed intervals. So,
by the Monotone Class Theorem, C includes the σ-field generated by the
field of all finite unions of right-semiclosed intervals (which, by the Royden
and Fitzpatrick Exercise 1.36 is the Borel sets in R). So (1) holds if B1 is
any set.

We can now inductively show that (1) holds for any
B2,B3, . . . ,Bn Borel sets. (As the text says, “Explicitly, we prove by
induction that if B1, . . . ,Bi are arbitrary Borel sets and Bi+1, . . . ,Bn are
right-semiclosed intervals, then (1) holds for B1, . . . ,Bn.”)
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Theorem 4.8.3 (continued 6)

Proof (continued). . . .
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Theorem 4.8.3 (continued 6)
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