Chapter 4. Basic Concepts of Probability Section 4.1. Introduction

Note. We start in Chapter 4 with our exploration of measure theory based on probability theory. We assume as background a knowledge of measure theory consistent with that given in Chapter 17 ("General Measure Spaces: Their Properties and Construction") and Chapter 18 ("Integration Over General Measure Spaces") of Royden and Fitzpatrick's *Real Analysis*, 4th edition (Prentice Hall, 2010). In this chapter, measure theory plays a minor role until we get to Section 4.6 ("Random Variables"). We start with a somewhat informal approach.

Note/Definition. When performing a "random experiment," the set Ω of all possible outcomes is the *sample space* for the experiment.

Definition. A σ -field on set Ω is a collection of subsets of Ω which includes Ω , is closed under countable unions, countable intersections, and complements.

Note. A " σ -field" is the same as a " σ -algebra." In these probability notes we'll use the term σ -field.

Definition. A measure space (Ω, \mathcal{F}, P) where \mathcal{F} is a σ -field on sample space Ω, P is a measure defined on \mathcal{F} , and $P(\Omega) = 1$ is a *probability space*. An element in \mathcal{F} is an *event*.