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Section 4.8. Independent Random Variables

Note. Recall from Definition 4.3.1 that two events A and B are independent if

P (A ∩ B) = P (A)P (B). In this section we define independent random variables

and relate this to properties of the distribution functions and the densities.

Definition 4.8.1. Let X1, X2, . . . , Xn be random variables on (Ω,F , P ). Then

X1, X2, . . . , Xn are independent if for all sets B1, B2, . . . , Bn ∈ B(R) we have

P ({X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn})

= P ({X1 ∈ B1})P ({X2 ∈ B2}) · · ·P ({xn ∈ Bn}).

We similarly define independent extended random variable by replacing B(R) with

B(R) = B(R ∪ {−∞,∞}).

Note. If X1, X2, . . . , Xn are independent random variables, then X1, X2, . . . , Xk,

for k < n, are also random events. To see this, let B1, B2, . . . , Bk ∈ B(R) and take

Bk+1 = Bk+2 = · · · = Bn = R. Then

P ({X1 ∈ B1, X2 ∈ B2, . . . , Xk ∈ Bk})

= P ({X1 ∈ B1, X2 ∈ B2, . . . , Xk ∈ Bk, Xk+1 ∈ R, Xk+2 ∈ R, . . . , Xn ∈ R})

= P ({X1 ∈ B1})P ({X2 ∈ B2}) · · ·P ({Xk ∈ Bk}) · 1 · 1 · · · 1

= P ({X1 ∈ B1})P ({X2 ∈ B2}) · · ·P ({Xk ∈ Bk}).

Notice that this behavior of random variables is different from the behavior of

events, as illustrated in Note 4.3.A.
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Definition. A random object on (Ω,F , P ) is a map Xi : (Ω,F) → (Ωi,Fi) where

ωi is a set and Fi is a σ-field of subsets of Ωi. Random objects X1, X2, . . . , Xn are

independent if for all B1 ∈ F1, B2 ∈ F2, . . . , Bn ∈ Fn we have

P ({X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn})

= P ({X1 ∈ B1})P ({X2 ∈ B2}) · · ·P ({Xn ∈ Bn}).

An arbitrary family of random objects Xi, where i ∈ I , is independent if Xi1
, Xi2

, . . . , Xin

are independent for all finite sets {i1, I2, . . . , in} of distinct indices in I .

Note. We now explore the classification of independent random variables in terms

of properties of the distribution function. First we need some results from Chapter

1 of the text.

Definition. Let Ω be a set. The collection of subsets F0 of set Ω is a field (or

algebra) if it contians Ω and it is closed under finite unions and complements (and

finite intersections, by De Morgan’s Laws). Collection C of subsets on ω is monotone

if (1) {Am}
∞
n=1 ⊂ C with A1 ⊂ A2 ⊂ · · · implies limn→∞ An = ∪∞

n=1 ∈ C, and (2)

if {Bn}
∞
n=1 ⊂ C with B1 ⊃ B2 ⊃ · · · implies limn→∞ Bn = ∩∞

n=1Bn ∈ C. If F is a

collection of subsets of Ω then the minimal σ-field over F , denoted σ(F), is the

intersection of all σ-fields containing F (this is called the “the smallest σ-algebra

that contains F” of the σ-algebra generated by F ; see their Proposition 1.13).

Note. “Clearly” an arbitrary intersection of monotone collections is a monotone

collection so we speak of the smallest monotone class containing a given collection

of sets. We need the following in this section.
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Theorem 1.3.9. The Monotone Class Theorem.

Let F0 be a field of subsets of Ω and C a class of subsets of Ω that is monotone. If

C ⊃ F0, then C ⊃ σ(F0), the minimal σ-filed over F0.

Theorem 4.8.3. Let X1, X2, . . . , Xn be random variables on (Ω,F , P ). Let Fi

by the distribution function of Xi, i = 1, 2, . . . , n (so Fi(xi) = P ({Xi ≤ xi})) and

F the distribution function of X = (X1, X2, . . . , Xn) (that is, F (x1, x2, . . . , xn) =

P ({X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn})). Then X1, X2, . . . , Xn are independent if

and only if F (x1, x2, . . . , xn) = F1(x1)F2(x2) · · ·Fn(xn) for all x1, x2, . . . , xn ∈ R.

Note. The next result lets us classify independent random variables in terms of

proerties of the density function.

Theorem 4.8.4. If X = (X1, X2, . . . , Xn) has a density function f , then each

Xi has a density fi. Furthermore, in this case X1, X2, . . . , Xn are independent if

and only if f(x1, x2, . . . , xn) = f1(x1)f2(x1) · · ·fn(xn) for all (x1, x2, . . . , xn) except

possibly for a Borel subset of R
n with Lebesgue measure zero.
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