Lemma 1.3.1

Lemma 1.3.1

Introduction to Set Theory

Chapter 1. Sets

1.3. The Axioms—Proofs of Theorems

Introduction to Set Theory

February 4, 2018 1 / 6

Lemma 1.3.1. There exists only one set with no elements.

Proof. Suppose A and B are both sets with no elements. Then every element of A is an element of B (vacuously) and every element of B is an element of A (vacuously). Therefore, by the Axiom of Extensionality, A = B.

() Introduction to Set Theory February 4, 2018 3 / 6

Example/Theorem 1.3.3

Example/Theorem 1.3.3

Theorem 1.3.4

Example/Theorem 1.3.3. If P and Q are sets then there is a set R such that $x \in R$ if and only if $x \in P$ and $x \in Q$.

Proof. Let property $\mathbf{R}(x,Q)$ be " $x \in Q$." Then by the Axiom Schema of Comprehension, for any give set A=P there is a set B=R such that $x \in R$ if and only if $x \in P$ and $\mathbf{P}(x,Q)$; that is, $x \in R$ if and only if $x \in P$ and $x \in Q$.

Lemma 1.3.4. For every set A and every property P(x), there is only one set B such that $x \in B$ if and only if $x \in A$ and P(x).

Proof. Suppose B' is another set such that $x \in B'$ if and only if $x \in a$ and P(x). Then $x \in B$ if and only if $x \in B'$; that is, every element of B is an element of B' and every element of B' is an element of B. So by the Axiom of Extensionality we have that B' = B. Hence, set B is unique. \square

Introduction to Set Theory February 4, 2018 4 / 6 () Introduction to Set Theory February 4, 2018 5 / 6

Example/Theorem 1.3.13

Example/Theorem 1.3.13.

- (a) $\{x \mid x \in P \text{ and } x \in Q\}$ exists.
- (b) $\{a \mid x = a \text{ or } x = b\}$ exists.
- (c) $\{x \mid x \notin x\}$ does not exist. (This is Russell's Paradox.)

Proof. (a) Let P(x, P, Q) be the property " $x \in P$ and $x \in Q$." Let A = P. Then P(x, P, Q) implies $x \in P$. So by Exercise 1.3.E, $\{x \in P \mid P(x, P, Q)\} = \{x \in P \mid x \in P \text{ and } x \in Q\}$ = $\{x \mid x \in P \text{ and } x \in Q\}$ exists. In fact, this is set R of Example 1.3.3.

- **(b)** Let $A = \{a, b\}$ which exists by the Axiom of Pair. So $\{x \mid x = a \text{ or } x = b\} = \{a, b\}$ exists.
- (c) Let P(x) be the property " $x \notin x$." Suppose such a set exists, $R = \{x \mid x \notin x\} = \{x \mid P(x)\}$. If $R \in R$ then property P(R) holds (since R is in set R) and so $R \notin R$, a contradiction. If $R \notin R$ then property P(R) holds (by the definition of P) and so $R \in R$, a contradiction.

() Introduction to Set Theory February 4, 2018 6 / 6