Introduction to Set Theory

Chapter 1. Sets 1.3. The Axioms—Proofs of Theorems

- [Example/Theorem 1.3.3](#page-4-0)
- [Theorem 1.3.4](#page-6-0)

Lemma 1.3.1

Lemma 1.3.1. There exists only one set with no elements.

Proof. Suppose A and B are both sets with no elements. Then every element of A is an element of B (vacuously) and every element of B is an element of A (vacuously). Therefore, by the Axiom of Extensionality, $A = B$

Lemma 1.3.1. There exists only one set with no elements.

Proof. Suppose A and B are both sets with no elements. Then every element of A is an element of B (vacuously) and every element of B is an element of A (vacuously). Therefore, by the Axiom of Extensionality, $A = B$

Example/Theorem 1.3.3. If P and Q are sets then there is a set R such that $x \in R$ if and only if $x \in P$ and $x \in Q$.

Proof. Let property $\mathbf{R}(x, Q)$ be " $x \in Q$." Then by the Axiom Schema of Comprehension, for any give set $A = P$ there is a set $B = R$ such that $x \in R$ if and only if $x \in P$ and $P(x, Q)$; that is, $x \in R$ if and only if $x \in P$ and $x \in Q$.

- **Example/Theorem 1.3.3.** If P and Q are sets then there is a set R such that $x \in R$ if and only if $x \in P$ and $x \in Q$.
- **Proof.** Let property $\mathbf{R}(x, Q)$ be " $x \in Q$." Then by the Axiom Schema of Comprehension, for any give set $A = P$ there is a set $B = R$ such that $x \in R$ if and only if $x \in P$ and $P(x, Q)$; that is, $x \in R$ if and only if $x \in P$ and $x \in Q$.

Lemma 1.3.4. For every set A and every property $P(x)$, there is only one set B such that $x \in B$ if and only if $x \in A$ and $P(x)$.

Proof. Suppose B' is another set such that $x \in B'$ if and only if $x \in a$ and $\mathbf{P}(x)$. Then $x \in B$ if and only if $x \in B'$; that is, every element of B is an element of B' and every element of B' is an element of B . So by the Axiom of Extensionality we have that $B' = B$. Hence, set B is unique.

- **Lemma 1.3.4.** For every set A and every property $P(x)$, there is only one set B such that $x \in B$ if and only if $x \in A$ and $P(x)$.
- **Proof.** Suppose B' is another set such that $x \in B'$ if and only if $x \in A$ and $\mathbf{P}(x)$. Then $x \in B$ if and only if $x \in B'$; that is, every element of B is an element of B' and every element of B' is an element of B . So by the Axiom of Extensionality we have that $B' = B$. Hence, set B is unique.

Example/Theorem 1.3.13.

(a)
$$
\{x \mid x \in P \text{ and } x \in Q\}
$$
 exists.

(b)
$$
\{a \mid x = a \text{ or } x = b\}
$$
 exists.

(c) $\{x \mid x \notin x\}$ does not exist. (This is Russell's Paradox.)

Proof. (a) Let $P(x, P, Q)$ be the property " $x \in P$ and $x \in Q$." Let $A = P$. Then $P(x, P, Q)$ implies $x \in P$. So by Exercise 1.3.E, $\{x \in P \mid P(x, P, Q)\} = \{x \in P \mid x \in P \text{ and } x \in Q\}$ $= \{x \mid x \in P \text{ and } x \in Q\}$ exists. In fact, this is set R of Example 1.3.3.

Example/Theorem 1.3.13.

\n- (a)
$$
\{x \mid x \in P \text{ and } x \in Q\}
$$
 exists.
\n- (b) $\{a \mid x = a \text{ or } x = b\}$ exists.
\n- (c) $\{x \mid x \notin x\}$ does not exist. (This is Russell's Paradox.)
\n

Proof. (a) Let $P(x, P, Q)$ be the property " $x \in P$ and $x \in Q$." Let $A = P$. Then $P(x, P, Q)$ implies $x \in P$. So by Exercise 1.3.E, $\{x \in P \mid P(x, P, Q)\} = \{x \in P \mid x \in P \text{ and } x \in Q\}$ $= \{x \mid x \in P \text{ and } x \in Q\}$ exists. In fact, this is set R of Example 1.3.3.

(b) Let $A = \{a, b\}$ which exists by the Axiom of Pair. So ${x \mid x = a \text{ or } x = b} = {a, b} \text{ exists.}$

Example/Theorem 1.3.13.

\n- (a)
$$
\{x \mid x \in P \text{ and } x \in Q\}
$$
 exists.
\n- (b) $\{a \mid x = a \text{ or } x = b\}$ exists.
\n- (c) $\{x \mid x \notin x\}$ does not exist. (This is Russell's Paradox.)
\n

Proof. (a) Let $P(x, P, Q)$ be the property " $x \in P$ and $x \in Q$." Let $A = P$. Then $P(x, P, Q)$ implies $x \in P$. So by Exercise 1.3.E, $\{x \in P \mid P(x, P, Q)\} = \{x \in P \mid x \in P \text{ and } x \in Q\}$ $= \{x \mid x \in P \text{ and } x \in Q\}$ exists. In fact, this is set R of Example 1.3.3.

(b) Let $A = \{a, b\}$ which exists by the Axiom of Pair. So ${x \mid x = a \text{ or } x = b} = {a, b} \text{ exists.}$

(c) Let $P(x)$ be the property " $x \notin x$." Suppose such a set exists, $R = \{x \mid x \notin x\} = \{x \mid P(x)\}\.$ If $R \in R$ then property $P(R)$ holds (since R is in set R) and so $R \notin R$, a contradiction. If $R \notin R$ then property $R(R)$ holds (by the definition of P) and so $R \in R$, a contradiction.

Example/Theorem 1.3.13.

\n- (a)
$$
\{x \mid x \in P \text{ and } x \in Q\}
$$
 exists.
\n- (b) $\{a \mid x = a \text{ or } x = b\}$ exists.
\n- (c) $\{x \mid x \notin x\}$ does not exist. (This is Russell's Paradox.)
\n

Proof. (a) Let $P(x, P, Q)$ be the property " $x \in P$ and $x \in Q$." Let $A = P$. Then $P(x, P, Q)$ implies $x \in P$. So by Exercise 1.3.E, $\{x \in P \mid P(x, P, Q)\} = \{x \in P \mid x \in P \text{ and } x \in Q\}$ $= \{x \mid x \in P \text{ and } x \in Q\}$ exists. In fact, this is set R of Example 1.3.3. **(b)** Let $A = \{a, b\}$ which exists by the Axiom of Pair. So ${x | x = a or x = b} = {a, b} exists.$ (c) Let $P(x)$ be the property " $x \notin x$." Suppose such a set exists, $R = \{x \mid x \notin x\} = \{x \mid P(x)\}\$. If $R \in R$ then property $P(R)$ holds (since R is in set R) and so $R \notin R$, a contradiction. If $R \notin R$ then property $R(R)$ holds (by the definition of P) and so $R \in R$, a contradiction.