Chapter 1. Sets

1.3. The Axioms—Proofs of Theorems
Table of contents

1. Lemma 1.3.1
2. Example/Theorem 1.3.3
3. Theorem 1.3.4
4. Example/Theorem 1.3.13
Lemma 1.3.1. There exists only one set with no elements.

Proof. Suppose A and B are both sets with no elements. Then every element of A is an element of B (vacuously) and every element of B is an element of A (vacuously). Therefore, by the Axiom of Extensionality, $A = B$.

\[
\square
\]
Lemma 1.3.1. There exists only one set with no elements.

Proof. Suppose A and B are both sets with no elements. Then every element of A is an element of B (vacuously) and every element of B is an element of A (vacuously). Therefore, by the Axiom of Extensionality, $A = B$.

\qed
Example/Theorem 1.3.3. If P and Q are sets then there is a set R such that $x \in R$ if and only if $x \in P$ and $x \in Q$.

Proof. Let property $R(x, Q)$ be “$x \in Q$.” Then by the Axiom Schema of Comprehension, for any given set $A = P$ there is a set $B = R$ such that $x \in R$ if and only if $x \in P$ and $P(x, Q)$; that is, $x \in R$ if and only if $x \in P$ and $x \in Q$. □
Example/Theorem 1.3.3. If P and Q are sets then there is a set R such that $x \in R$ if and only if $x \in P$ and $x \in Q$.

Proof. Let property $R(x, Q)$ be “$x \in Q$.” Then by the Axiom Schema of Comprehension, for any give set $A = P$ there is a set $B = R$ such that $x \in R$ if and only if $x \in P$ and $P(x, Q)$; that is, $x \in R$ if and only if $x \in P$ and $x \in Q$.

\[\square\]
Theorem 1.3.4

Lemma 1.3.4. For every set A and every property $P(x)$, there is only one set B such that $x \in B$ if and only if $x \in A$ and $P(x)$.

Proof. Suppose B' is another set such that $x \in B'$ if and only if $x \in A$ and $P(x)$. Then $x \in B$ if and only if $x \in B'$; that is, every element of B is an element of B' and every element of B' is an element of B. So by the Axiom of Extensionality we have that $B' = B$. Hence, set B is unique. \qed
Lemma 1.3.4. For every set A and every property $P(x)$, there is only one set B such that $x \in B$ if and only if $x \in A$ and $P(x)$.

Proof. Suppose B' is another set such that $x \in B'$ if and only if $x \in A$ and $P(x)$. Then $x \in B$ if and only if $x \in B'$; that is, every element of B is an element of B' and every element of B' is an element of B. So by the Axiom of Extensionality we have that $B' = B$. Hence, set B is unique. \qed
Example/Theorem 1.3.13.

(a) \(\{ x \mid x \in P \text{ and } x \in Q \} \) exists.

(b) \(\{ a \mid x = a \text{ or } x = b \} \) exists.

(c) \(\{ x \mid x \not\in x \} \) does not exist. (This is Russell’s Paradox.)

Proof. (a) Let \(P(x, P, Q) \) be the property “\(x \in P \text{ and } x \in Q \).” Let \(A = P \). Then \(P(x, P, Q) \) implies \(x \in P \). So by Exercise 1.3.E, \[\{ x \in P \mid P(x, P, Q) \} = \{ x \in P \mid x \in P \text{ and } x \in Q \} = \{ x \mid x \in P \text{ and } x \in Q \} \] exists. In fact, this is set \(R \) of Example 1.3.3.
Example/Theorem 1.3.13.

(a) \(\{x \mid x \in P \text{ and } x \in Q\} \) exists.
(b) \(\{a \mid x = a \text{ or } x = b\} \) exists.
(c) \(\{x \mid x \notin x\} \) does not exist. (This is Russell's Paradox.)

Proof. (a) Let \(P(x, P, Q) \) be the property “\(x \in P \text{ and } x \in Q \).” Let \(A = P \). Then \(P(x, P, Q) \) implies \(x \in P \). So by Exercise 1.3.E,
\[
\{x \in P \mid P(x, P, Q)\} = \{x \in P \mid x \in P \text{ and } x \in Q\} = \{x \mid x \in P \text{ and } x \in Q\} \text{ exists. In fact, this is set } R \text{ of Example 1.3.3.}
\]

(b) Let \(A = \{a, b\} \) which exists by the Axiom of Pair. So
\[
\{x \mid x = a \text{ or } x = b\} = \{a, b\} \text{ exists.}
\]
Example/Theorem 1.3.13.

(a) \(\{ x \mid x \in P \text{ and } x \in Q \} \) exists.
(b) \(\{ a \mid x = a \text{ or } x = b \} \) exists.
(c) \(\{ x \mid x \not\in x \} \) does not exist. (This is Russell’s Paradox.)

Proof. (a) Let \(P(x, P, Q) \) be the property “\(x \in P \text{ and } x \in Q \).” Let \(A = P \). Then \(P(x, P, Q) \) implies \(x \in P \). So by Exercise 1.3.E,

\[
\{ x \in P \mid P(x, P, Q) \} = \{ x \in P \mid x \in P \text{ and } x \in Q \}
\]

= \(\{ x \mid x \in P \text{ and } x \in Q \} \) exists. In fact, this is set \(R \) of Example 1.3.3.

(b) Let \(A = \{ a, b \} \) which exists by the Axiom of Pair. So

\[
\{ x \mid x = a \text{ or } x = b \} = \{ a, b \} \text{ exists.}
\]

(c) Let \(P(x) \) be the property “\(x \not\in x \).” Suppose such a set exists, \(R = \{ x \mid x \not\in x \} = \{ x \mid P(x) \} \). If \(R \in R \) then property \(P(R) \) holds (since \(R \) is in set \(R \)) and so \(R \not\in R \), a contradiction. If \(R \not\in R \) then property \(R(R) \) holds (by the definition of \(P \)) and so \(R \in R \), a contradiction.
Example/Theorem 1.3.13.

(a) \(\{x \mid x \in P \text{ and } x \in Q\} \) exists.

(b) \(\{a \mid x = a \text{ or } x = b\} \) exists.

(c) \(\{x \mid x \not\in x\} \) does not exist. (This is Russell’s Paradox.)

Proof. (a) Let \(P(x, P, Q) \) be the property “\(x \in P \) and \(x \in Q \).” Let \(A = P \). Then \(P(x, P, Q) \) implies \(x \in P \). So by Exercise 1.3.E, \(\{x \in P \mid P(x, P, Q)\} = \{x \in P \mid x \in P \text{ and } x \in Q\} \)
\(= \{x \mid x \in P \text{ and } x \in Q\} \) exists. In fact, this is set \(R \) of Example 1.3.3. □

(b) Let \(A = \{a, b\} \) which exists by the Axiom of Pair. So \(\{x \mid x = a \text{ or } x = b\} = \{a, b\} \) exists. □

(c) Let \(P(x) \) be the property “\(x \not\in x\).” Suppose such a set exists, \(R = \{x \mid x \not\in x\} = \{x \mid P(x)\} \). If \(R \in R \) then property \(P(R) \) holds (since \(R \) is in set \(R \)) and so \(R \not\in R \), a contradiction. If \(R \not\in R \) then property \(R(R) \) holds (by the definition of \(P \)) and so \(R \in R \), a contradiction. □