Introduction to Set Theory

Chapter 1. Sets 1.3. The Axioms—Proofs of Theorems

- 2 Example/Theorem 1.3.3
- 3 Theorem 1.3.4

Lemma 1.3.1. There exists only one set with no elements.

Proof. Suppose A and B are both sets with no elements. Then every element of A is an element of B (vacuously) and every element of B is an element of A (vacuously). Therefore, by the Axiom of Extensionality, A = B.

Lemma 1.3.1. There exists only one set with no elements.

Proof. Suppose *A* and *B* are both sets with no elements. Then every element of *A* is an element of *B* (vacuously) and every element of *B* is an element of *A* (vacuously). Therefore, by the Axiom of Extensionality, A = B.

Example/Theorem 1.3.3. If *P* and *Q* are sets then there is a set *R* such that $x \in R$ if and only if $x \in P$ and $x \in Q$.

Proof. Let property $\mathbf{R}(x, Q)$ be " $x \in Q$." Then by the Axiom Schema of Comprehension, for any give set A = P there is a set B = R such that $x \in R$ if and only if $x \in P$ and $\mathbf{P}(x, Q)$; that is, $x \in R$ if and only if $x \in P$ and $x \in Q$.

- **Example/Theorem 1.3.3.** If *P* and *Q* are sets then there is a set *R* such that $x \in R$ if and only if $x \in P$ and $x \in Q$.
- **Proof.** Let property $\mathbf{R}(x, Q)$ be " $x \in Q$." Then by the Axiom Schema of Comprehension, for any give set A = P there is a set B = R such that $x \in R$ if and only if $x \in P$ and $\mathbf{P}(x, Q)$; that is, $x \in R$ if and only if $x \in P$ and $x \in Q$.

Lemma 1.3.4. For every set A and every property P(x), there is only one set B such that $x \in B$ if and only if $x \in A$ and P(x).

Proof. Suppose B' is another set such that $x \in B'$ if and only if $x \in a$ and P(x). Then $x \in B$ if and only if $x \in B'$; that is, every element of B is an element of B' and every element of B' is an element of B. So by the Axiom of Extensionality we have that B' = B. Hence, set B is unique. \Box

- **Lemma 1.3.4.** For every set A and every property P(x), there is only one set B such that $x \in B$ if and only if $x \in A$ and P(x).
- **Proof.** Suppose B' is another set such that $x \in B'$ if and only if $x \in a$ and P(x). Then $x \in B$ if and only if $x \in B'$; that is, every element of B is an element of B' and every element of B' is an element of B. So by the Axiom of Extensionality we have that B' = B. Hence, set B is unique. \Box

Example/Theorem 1.3.13.

Proof. (a) Let P(x, P, Q) be the property " $x \in P$ and $x \in Q$." Let A = P. Then P(x, P, Q) implies $x \in P$. So by Exercise 1.3.E, $\{x \in P \mid P(x, P, Q)\} = \{x \in P \mid x \in P \text{ and } x \in Q\}$ $= \{x \mid x \in P \text{ and } x \in Q\}$ exists. In fact, this is set R of Example 1.3.3.

Example/Theorem 1.3.13.

Proof. (a) Let P(x, P, Q) be the property " $x \in P$ and $x \in Q$." Let A = P. Then P(x, P, Q) implies $x \in P$. So by Exercise 1.3.E, $\{x \in P \mid P(x, P, Q)\} = \{x \in P \mid x \in P \text{ and } x \in Q\}$ $= \{x \mid x \in P \text{ and } x \in Q\}$ exists. In fact, this is set R of Example 1.3.3.

(b) Let $A = \{a, b\}$ which exists by the Axiom of Pair. So $\{x \mid x = a \text{ or } x = b\} = \{a, b\}$ exists.

Example/Theorem 1.3.13.

Proof. (a) Let P(x, P, Q) be the property " $x \in P$ and $x \in Q$." Let A = P. Then P(x, P, Q) implies $x \in P$. So by Exercise 1.3.E, $\{x \in P \mid P(x, P, Q)\} = \{x \in P \mid x \in P \text{ and } x \in Q\}$ $= \{x \mid x \in P \text{ and } x \in Q\}$ exists. In fact, this is set R of Example 1.3.3.

(b) Let $A = \{a, b\}$ which exists by the Axiom of Pair. So $\{x \mid x = a \text{ or } x = b\} = \{a, b\}$ exists.

(c) Let $\mathbf{P}(x)$ be the property " $x \notin x$." Suppose such a set exists, $R = \{x \mid x \notin x\} = \{x \mid \mathbf{P}(x)\}$. If $R \in R$ then property $\mathbf{P}(R)$ holds (since R is in set R) and so $R \notin R$, a contradiction. If $R \notin R$ then property $\mathbf{R}(R)$ holds (by the definition of \mathbf{P}) and so $R \in R$, a contradiction.

Example/Theorem 1.3.13.

Proof. (a) Let P(x, P, Q) be the property " $x \in P$ and $x \in Q$." Let A = P. Then $\mathbf{P}(x, P, Q)$ implies $x \in P$. So by Exercise 1.3.E, $\{x \in P \mid \mathbf{P}(x, P, Q)\} = \{x \in P \mid x \in P \text{ and } x \in Q\}$ $= \{x \mid x \in P \text{ and } x \in Q\}$ exists. In fact, this is set R of Example 1.3.3 (b) Let $A = \{a, b\}$ which exists by the Axiom of Pair. So $\{x \mid x = a \text{ or } x = b\} = \{a, b\}$ exists. (c) Let P(x) be the property " $x \notin x$." Suppose such a set exists, $R = \{x \mid x \notin x\} = \{x \mid \mathbf{P}(x)\}$. If $R \in R$ then property $\mathbf{P}(R)$ holds (since *R* is in set *R*) and so $R \notin R$, a contradiction. If $R \notin R$ then property $\mathbf{R}(R)$ holds (by the definition of \mathbf{P}) and so $R \in R$, a contradiction.