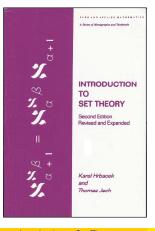
Introduction to Set Theory

Chapter 2. Relations, Functions, and Orderings

2.1. Ordered Pairs—Proofs of Theorems



February 4, 2018

Theorem 2.1.2

Theorem 2.1.2. (a, b) = (a', b') if and only if a = a' and b = b'.

Proof. If a = a' and b = b' then $\{a\} = \{a'\}$ and $\{a, b\} = \{a', b'\}$ so $(a,b) = \{\{a\}, \{a,b\}\} = \{\{a'\}, \{a',b'\}\} = (a',b').$

Suppose (a, b) = (a', b'); that is, suppose $\{a\{a\}, \{a,b\}\} = \{\{a'\}, \{a',b'\}\}\$. First, if $a \neq b$ then $\{a\} \neq \{a',b'\}$ (since $b' \in \{a', b'\}$ but $b \notin \{a\}$) and so $\{a\} = \{a'\}$ and $\{a, b\} = \{a', b'\}$. So a=a' and then we must have b=b' (since $b\neq a=a'$). Second, if a=bthen $\{\{a\}, \{a, b\}\} = \{\{a\}, \{a, a\}\} = \{\{a\}\}\}$. So $\{\{a\}\} = \{\{a'\}, \{a', b'\}\}$ and we have $\{a\} = \{a'\}$ and $\{a\} = \{a', b'\}$. That is, a = a' and a = a' = b' or a = a' and b = b', as claimed.