## Introduction to Set Theory

## Chapter 2. Relations, Functions, and Orderings

2.2. Relations—Proofs of Theorems



Introduction to Set Theory

April 16, 2018 1 /

Theorem 2.2.A

## Theorem 2.2.A

**Theorem 2.2.A.** For sets A and B, the cartesian product  $A \times B$  exists.

**Proof.** By Exercise 2.1.1, if  $a \in A$  and  $b \in B$  then  $(a, b) \in \mathcal{P}(\mathcal{P}(A \cup B))$ . So

$$A \times B = \{(a, b) \in \mathcal{P}(\mathcal{P}(A \cup B)) \mid a \in A \text{ and } b \in B\}.$$

Now  $\mathcal{P}(\mathcal{P}(A \cup B))$  exists for given sets A and B by The Axiom of Union and The Axiom of Power Set (applied twice), so  $A \times B$  exists by the Axiom Schema of Comprehension.

Introduction to Set Theory April 16, 2018 4 / 4

Lemma 2.2.9

## Lemma 2.2.9

**Lemma 2.2.9.** The inverse image of B under R is equal to the image of B under  $R^{-1}$ .

**Proof.** By Exercise 2.2.4(c),  $dom(R) = ran(R^{-1})$ . We have

$$z \in dom(R) = \{z \mid \text{ there exists } y \text{ such that } xRy\},\$$

and so

$$x \in R^{-1}[B] = \{x \in dom(R) \mid \text{ there exists } y \in B \text{ such that } xRy\}$$

if and only if for some  $y \in B$  we have xRy (that is,  $(x,y) \in R$ ). But  $(x,y) \in R$  if and only if  $(y,x \in R^{-1}$  by definition of  $R^{-1}$ . Therefore  $x \in R^{-1}[b]$  if and only if for some  $y \in B$ ,  $yR^{-1}x$ ; that is, if and only if  $x \in R^{-1}[B]$ . So  $dom(R) = ran(R^{-1})$  equals  $R^{-1}[B]$ , as claimed.  $\square$ 

Introduction to Set Theory