Naive Set Theory

Section 4. Unions and Intersections—Proofs of Theorems

Table of contents

Theorem 4.A

Theorem 4.A. For sets A, B, and C we have $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof of Distribution of Union over Intersection. Suppose $x \in A \cup (C \cap C)$. Then either $x \in A$ of $x \in B \cap C$. If $x \in A$, then $x \in A \cup B$ and $x \in A \cup C$, so that $x \in (A \cup B) \cap A \cup C)$. If $x \in B \cap C$ then $x \in B$ and $x \in C$, so that $x \in A \cup B$ and $x \in A \cup C$, and hence $x \in (A \cup B) \cap A \cup C)$. That is, if $x \in A \cup (C \cap C)$ then $x \in (A \cup B) \cap A \cup C)$, or equivalently $A \cup (C \cap C) \subset (A \cup B) \cap A \cup C)$.

Theorem 4.A

Theorem 4.A. For sets A, B, and C we have

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof of Distribution of Union over Intersection. Suppose $x \in A \cup (C \cap C)$. Then either $x \in A$ of $x \in B \cap C$. If $x \in A$, then $x \in A \cup B$ and $x \in A \cup C$, so that $x \in (A \cup B) \cap A \cup C)$. If $x \in B \cap C$ then $x \in B$ and $x \in C$, so that $x \in A \cup B$ and $x \in A \cup C$, and hence $x \in (A \cup B) \cap A \cup C)$. That is, if $x \in A \cup (C \cap C)$ then $x \in (A \cup B) \cap A \cup C)$, or equivalently $A \cup (C \cap C) \subset (A \cup B) \cap A \cup C)$.

Next, suppose $x \in (A \cup B) \cap (A \cup C)$. The $x \in A \cup B$ and $x \in A \cup C$. Notice that if $x \notin A$ then we must have both $x \in B$ and $x \in C$; that is, $x \in B \cap C$ and hence $x \in A \cup (B \cap C)$. If $x \in A$, then $x \in A \cup (B \cap C)$. That is, if $x \in (A \cup B) \cap (A \cup C)$ then $x \in A \cup (B \cap C)$, or equivalently $A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$. Therefore, by the Axiom of Extension, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, as claimed.

Theorem 4.A

Theorem 4.A. For sets A, B, and C we have

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof of Distribution of Union over Intersection. Suppose $x \in A \cup (C \cap C)$. Then either $x \in A$ of $x \in B \cap C$. If $x \in A$, then $x \in A \cup B$ and $x \in A \cup C$, so that $x \in (A \cup B) \cap A \cup C)$. If $x \in B \cap C$ then $x \in B$ and $x \in C$, so that $x \in A \cup B$ and $x \in A \cup C$, and hence $x \in (A \cup B) \cap A \cup C)$. That is, if $x \in A \cup (C \cap C)$ then $x \in (A \cup B) \cap A \cup C)$, or equivalently $A \cup (C \cap C) \subset (A \cup B) \cap A \cup C)$.

Next, suppose $x \in (A \cup B) \cap (A \cup C)$. The $x \in A \cup B$ and $x \in A \cup C$. Notice that if $x \notin A$ then we must have both $x \in B$ and $x \in C$; that is, $x \in B \cap C$ and hence $x \in A \cup (B \cap C)$. If $x \in A$, then $x \in A \cup (B \cap C)$. That is, if $x \in (A \cup B) \cap (A \cup C)$ then $x \in A \cup (B \cap C)$, or equivalently $A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$. Therefore, by the Axiom of Extension, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, as claimed.