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Geometry versus Topology

Definition. The aspects of a surface’s (or any geometric object’s)

nature which are unaffected by deformation make up the topology

of the surface (or object). For example, connectedness and simple-

connectedness are topological properties:

Definition. A surface’s geometry consists of those properties which

do change when the surface is deformed. For example, curvature,

area, distances, and angles are geometric properties.
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Local versus Global Properties

Definition. Local properties of a manifold are those which are

observable within a small region of the manifold. Global properties

require consideration of the manifold as a whole.

Note. A surface is “locally 2-dimensional.” We live in a universe

that is locally 3-dimensional. That is, our universe is a 3-manifold.

Note. When discussing properties of surfaces, we often take the

perspective of a 2-dimensional creature living within the surface (a

“Flatlander”).

Definition. A flat 2-torus can be visualized as follows:

“Connect” opposite sides according to the arrows.

The “connections” are not physically performed, only conceptually

performed (so an insect crawling off the right side appears on the left

side.)
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Note. Now let’s construct a flat 3-torus. We start with a cube.

Conceptually join the front and back of the cube, the left and the

right sides of the cube, and the top and the bottom of the cube. In

this room, that corresponds to joining the front wall and the back

wall, the left wall and the right wall, and the floor and the ceiling.

Again, the connections are conceptual. This means that if we throw

a ball out the back of the room, it will reappear at the front of the

room. This reflects the path that a photon would follow. therfore, if

you look straight out the back of the room, you see the back of your

own head!

Note. There are only 6 directions in which one can look to see the

back of one’s own head (well. . . ). Since these directions “special”

in that sense, a 3-torus is not isotropic. However the “structure” of

space is the same at all points, and the space is homogeneous.

Note. Another interesting 3-manifold is the 3-sphere. It is best

thought of by making analogies with the 2-sphere. Here’s the story

of what we would see in a 3-sphere. If you are the sole inhabitant

of such a space, then you would see yourself in every direction you

look. Suppose the circumference of this 3-sphere is C and suppose I

am in this space with you. If I start to fly away from you, then you

see my image get smaller and smaller until I am a distance of C/4

from you. Then my image starts to get larger. When I am only 3

feet from the point antipodal to you (which lies a distance of C/2

from you), then I appear the same as I would when I am only 3 feet

from you. When I arrive at the antipodal point, you see my image

fill the entire sky!
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Definition. A path in a manifold that brings a traveler back to

his point of origin in a mirror-reversed state is called an orientation

reversing path. Manifolds with such paths are nonorientable. So

far, we have only discussed orientable manifolds.

Definition. A Möbius strip is constructed by taking a rectangle

and joining opposite sides after twisting the rectangle:

This has the curious property that it only has one side and one edge.

A Möbius strip is a nonorientable surface.

Note. We can join the top and the bottom of the Möbius strip

to generate a Klein bottle. This is an example of a nonorientable

2-manifold. Unfortunately, we cannot visualize a Klein bottle in 3

dimensions.
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Note. We can mentally construct nonorientable 3-manifolds in a

manner similar to the construction of the 3-torus. Consider connect-

ing the floor and ceiling, and the front and back of this room. Now

we’ll connect the sides of the room by conceptually connecting the

front part of the left side to the back part of the right side (this

corresponds to the “flip” made in constructing the Möbius strip).

Note. When discussing local and global properties, we are mostly

concerned with “local geometry” and “global topology.” A flat torus

and a doughnut have the same global topology, but different local

geometries (consider the sum of angles of a triangle, eg.). On the

other hand, a flat torus and a plane have the same local geometry,

but different global topology.

Closed versus Open Manifolds

Definition. A manifold is closed if it is finite (or more accurately,

if it is bounded). A manifold is open if it is infinite (or unbounded).

Note. When we use the term “manifold,” we refer to objects

without boundaries. For example, a circle is a manifold (locally

1-dimensional) but a disk (which is locally 2-dimensional) is not.

Note. There are 6 Euclidean, closed manifolds.
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Curvature

Note. We illustrate curvature very informally with three examples

(each a 2-manifold).

1. A sphere has positive curvature:

2. A plane and a cylinder have zero curvature:
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3. A “saddle” has negative curvature:

Definition. A surface with positive curvature is said to have elliptic

geometry. A surface with zero curvature is said to have Euclidean

geometry. A surface with negative curvature is said to have hyper-

bolic geometry. (However, the term “geometry” implies a certain

homogeneity of a surface — namely, that the surface must be of

constant curvature. The sphere, plane, and cylinder are of constant

curvature, but the saddle surface is not.)
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Local Geometry of the Universe

Note. As we have seen, the universe may have any of the three

above geometries, depending on its density:

Geometry Fate Density

Elliptic Recollapse ρ > 3H/(8πG)

Euclidean Eternal Expansion (barely) ρ = 3H/(8πG)

Hyperbolic Eternal Expansion ρ < 3H/(8πG)

Note. An elliptic universe must have finite volume and therefore

deserves the term “closed.” However, a common misconception is

to describe a Euclidean or hyperbolic universe as necessarily “open’

(i.e., infinite). This is NOT THE CASE! The proper terms to use

are (geometrically): elliptic, Euclidean, hyperbolic, OR (curvature):

positive, zero, negative (respectively). As we shall see, there are pos-

sible (even, in a sense, probable) Euclidean and hyperbolic geometries

on closed 3-manifolds. This leads us to questions of global topology

for the 3-manifold which is our universe.
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Global Topology of the Universe

Note. We can best visualize certain 3-manifolds by throwing out a

dimension and imagining ourselves as flatlanders. An example of a

closed 2-manifold with positive curvature is then a sphere (denoted

S2). An example of an open 2-manifold with hyperbolic geometry is

the saddle (denoted H2). Just add a dimension and you have two

possible models for the universe (denoted S3 and H3, respectively).

Recall. The flat 3-torus is constructed by conceptually joining op-

posite faces of a cube. This is denoted T 3 and is an example of a

closed Euclidean 3-manifold.

Note. S3, H3, and E3 = R3 are the only homogeneous and isotropic

3-manifolds.

Note. The Seifert-Weber space is constructed by conceptually ad-

hering opposite faces of a dodecahedron, after giving them a 3/10

clockwise turn. This space is an example of a closed hyperbolic 3-

manifold.
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Possible Global Topologies of the Universe

Elliptic Euclidean Hyperbolic

closed S3 T 3 Seifert-Weber space

open NONE 3-D Euclidean Space, E3 H3

Note. William Thurston has shown (1970s–80s) that “most” 3-

manifolds admit a hyperbolic geometry.

Empirical Evidence

Note. Einstein’s general theory of relativity tells us how matter

and space interact. This theory only deals with the universe’s local

geometry (and it is the field equations which lead us to the ‘fate

of the universe” under the different local geometries given above).

If we can calculate the universe’s density, then we can determine

its curvature, local geometry, and ultimate fate. However, this still

leaves the question of the universe’s global topology.

Note. One could detect that he lives in a closed (i.e., finite) universe

by looking for images of himself! That is, we could look for, say, an

image of the Virgo cluster appearing far off in the universe. Or, we

could look for two images of a given quasar in opposite directions

of the sky. However, given the distance scale, these objects simply

evolve too quickly for us to recognize them as they were billions of

years ago.
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Note. Consider the cosmic microwave background (CMB). As we

see it, it represents a sphere of radiation (called the “surface of last

scattering”) with us at the center. In a closed universe, this sphere

could intersect itself ad the intersection would result in a circle. It

might be possible, then, to see the same circles of intersection in two

different areas of the sky. There are tiny fluctuations in the CMB,

and these circles could be detected by looking for similar patterns

in the fluctuations. With the circles in hand, a precise model of

the universe could be EMPIRICALLY constructed which reflects not

only the local geometry, but also the global topology.

Note. The Cosmic Background Explorer (COBE) launched around

1990 did not have sufficient resolution to detect these circles (its

resolution was only 7◦ — 14 times the apparent diameter of the

moon). However, NASA plans to launch the Microwave Anisotropy

Satellite (MAP) in Fall 200 which would have sufficient resolution

to detect these circles, In addition, the European Space Agency is

planning to launch a satellite called the Planck Explorer in the early

2000s which will have a resolution even better than that of MAP.

Therefore, we should see these fundamental questions resolved within

the next 7 to 10 years!
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