Special Relativity Homework Set 1

1. In the Michelson-Morley experiment, $L_{1}=L_{2}=11 \mathrm{~m}$, and the light used had a wavelength $\lambda \approx 5.9 \times 10^{-7} \mathrm{~m}$. The period T of this light, given by $T=\lambda / c$, is approximately $2 \times 10^{-15} \mathrm{sec}$. Let $N=\left(\Delta t-\Delta t^{\prime}\right) / T$, the number of periods contained in the change in time delay.
(a) Assuming the Earth's speed through the ether is $3 \times 10^{4} \mathrm{~m} / \mathrm{sec}$, verify that $N \approx 0.37$ (on the basis of the ether theory), i.e., the interference pattern should shift by 37% of the distance between consecutive bands.
(b) In actuality, Michelson and Morley observed a pattern shift less than 1% of the distance between consecutive bans, i.e., $N \approx 0.01$. Show this implied that the "ether wind," if it exists at all, is "blowing" at less than one-sixth the Earth's orbital speed.

In the following two exercises, assume that any object moving through the ether undergoes a contraction by the factor $\left(1-v^{2} / c^{2}\right)^{1 / 2}$ in the direction of its motion, as suggested by Fitzgerald. The travel times t_{1} and t_{2} are then $t_{1}=\frac{2 L_{1}}{c}\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}$ and $t_{2}=\frac{2 L_{2}}{c}\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}$. (There is now no predeicted shift when the apparatus is rotated.)
2. Suppose we assume that the sun is at rest in the ether. Let $u\left(\approx 3 \times 10^{4} \mathrm{~m} / \mathrm{sec}\right)$ be the Earth's orbital velocity, and let $w(\approx 460 \mathrm{~m} / \mathrm{sec})$ be the surface velocity of the Earth due to the Earth's rotation on its axis. Compute the interference pattern shift ΔN that would be expected over the course of a day when the speed of the apparatus varies from $v=u+w$ to $v^{\prime}=u-w$. Hint: We can show that $\Delta N=\frac{\Delta L}{\lambda}\left(\frac{v^{2}-v^{\prime 2}}{c^{2}}\right)$.
3. Let us now reject both the ether hypothesis and the contraction hypothesis and assume the speed of light is the same in all directions in all inertial frames. If $\Delta L=L_{1}-L_{2} \neq 0$, then the light rays from the two arms will arrive at the viewer separated by a time interval of $2 \Delta L / c$ seconds. If T is the period of the light used, then the number of periods in this time interval is $N=\frac{2 \Delta L}{c T}$. In the Kennedy-Thorndike experiment, $\Delta L=0.16 \mathrm{~m}$ and $T \approx 1.8 \times 10^{-15}$ sec.
(a) Compute N.
(b) The equation for N above may be solved for c to obtain $c=\frac{2 \Delta L}{N T}$. Over six months of observation, N was found to vary less than 0.003 . On the assumption that ΔL and T remained constant, show that this implies a variation in the speed of light of about 1.5 $\mathrm{m} / \mathrm{sec}$. [Hint: $\Delta c \approx(d c / d N) \Delta N$.]

