
Special Relativity

(Differential Geometry)

Homework, Set 10

1. Use the relationship
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to compute the Gauss curvature of a sphere of radius r.

2. Use the relationship of number 1 to compute the Guass curvature of the torus: ~X(u, v) =

((R + r cos u) cos v, (R + r cosu) sin v, r sin u).

3. Let M be an open subset of R2 with the differentiable structure generated by the identity

mapping. Suppose the metric on M is given by ds2 =
1

γ2
(du2 + dv2) where γ = γ(u, v) is

smooth, positive-valued function of the Cartesian coordinates (u, v). Show that M has Guass

curvature
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v ).

HINT: When F = 0 we have
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Apply this.

4. (The Poincare Upper Half-Plane) Suppose that

M = {(u, v) | v > 0}, γ(u, v) = v/k

where k is a positive constant. Show that K = −1/k2. HINT: Use number 3.

BONUS. A geodesic of the Poincare Upper Half-Plane satisfies

du
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=
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for some constant h. Use this to describe geodesics of the Poincare Upper Half-Plane.


