Special Relativity (Differential Geometry) Homework, Set 10

1. Use the relationship

$$
K=\frac{1}{2 \sqrt{E G}}\left(\frac{\partial}{\partial u}\left[\frac{G_{u}}{\sqrt{E G}}\right]+\frac{\partial}{\partial v}\left[\frac{E_{v}}{\sqrt{E G}}\right]\right)
$$

to compute the Gauss curvature of a sphere of radius r.
2. Use the relationship of number 1 to compute the Guass curvature of the torus: $\vec{X}(u, v)=$ $((R+r \cos u) \cos v,(R+r \cos u) \sin v, r \sin u)$.
3. Let M be an open subset of \mathbb{R}^{2} with the differentiable structure generated by the identity mapping. Suppose the metric on M is given by $d s^{2}=\frac{1}{\gamma^{2}}\left(d u^{2}+d v^{2}\right)$ where $\gamma=\gamma(u, v)$ is smooth, positive-valued function of the Cartesian coordinates (u, v). Show that M has Guass curvature

$$
K=\gamma\left(\gamma_{u u}+\gamma_{v v}\right)-\left(\gamma_{u}^{2}+\gamma_{v}^{2}\right)
$$

HINT: When $F=0$ we have

$$
K=-\frac{1}{\sqrt{E G}}\left(\frac{\partial}{\partial u}\left[\frac{1}{\sqrt{E}} \frac{\partial \sqrt{G}}{\partial u}\right]+\frac{\partial}{\partial v}\left[\frac{1}{\sqrt{G}} \frac{\partial \sqrt{E}}{\partial v}\right]\right) .
$$

Apply this.
4. (The Poincare Upper Half-Plane) Suppose that

$$
M=\{(u, v) \mid v>0\}, \gamma(u, v)=v / k
$$

where k is a positive constant. Show that $K=-1 / k^{2}$. HINT: Use number 3 .
BONUS. A geodesic of the Poincare Upper Half-Plane satisfies

$$
\frac{d u}{d v}=\frac{h v}{\left(k^{2}-h^{2} v^{2}\right)^{1 / 2}}
$$

for some constant h. Use this to describe geodesics of the Poincare Upper Half-Plane.

