Special Relativity (Differential Geometry) Homework, Set 11

1. Assume the interval is given by

$$d\tau^{2} = \left(1 - \frac{2M}{r}\right) dt^{2} - \left(1 - \frac{2M}{r}\right)^{-1} dr^{2} - r^{2} d\phi^{2} - r^{2} \sin \phi \, d\theta.$$

By setting $d\tau = 0$ and integrating, compute the time $(\int dt)$ required for a light photon to travel radially (i.e., with ϕ and θ constant) from $r = r_1$ to $r = r_2$.

- 2. Verify the values of $\Delta \theta_{\text{cent}}$ given in Table III-2 for Mercury and Earth. HINT: $\Delta \theta_{\text{cent}} = \frac{6\pi Mn}{a(1-e^2)}$ where *M* is the solar mass (in cm it's 1.48×10^5), *n* is the number of obits for the planet in 100 years, *a* is the semi-major axis of the orbit, and *e* is the eccentricity of the orbit.
- 3. Compute the angle of deflection $\Delta \theta = 4M_{\text{Earth}}/R_{\text{Earth}}$ for a light ray grazing the Earth (in radians and then in seconds of arc). HINT: You can convert mass from traditional units (grams, say) to geometric units (centimeters, say) with the formula $M_{\text{Cm}} = GM_{\text{grams}}/c^2$. It follows that the mass is 1/2 the Schwarzschild radius.
- 4. Use the substitution $v = t + r + 2M \ln \left| \frac{r}{2M} 1 \right|$ to show that the Schwarzschild metric of number 1 can be written as

$$d\tau^{2} = (1 - 2M/r)dv^{2} - dv \, dr - r^{2} \, d\phi^{2} - r^{2} \sin^{2} \phi \, d\theta.$$