Special Relativity (Differential Geometry) Homework, Set 11

1. Assume the interval is given by

$$
d \tau^{2}=\left(1-\frac{2 M}{r}\right) d t^{2}-\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}-r^{2} d \phi^{2}-r^{2} \sin \phi d \theta
$$

By setting $d \tau=0$ and integrating, compute the time $\left(\int d t\right)$ required for a light photon to travel radially (i.e., with ϕ and θ constant) from $r=r_{1}$ to $r=r_{2}$.
2. Verify the values of $\Delta \theta_{\text {cent }}$ given in Table III-2 for Mercury and Earth. HINT: $\Delta \theta_{\text {cent }}=$ $\frac{6 \pi M n}{a\left(1-e^{2}\right)}$ where M is the solar mass (in cm it's 1.48×10^{5}), n is the number of obits for the planet in 100 years, a is the semi-major axis of the orbit, and e is the eccentricity of the orbit.
3. Compute the angle of deflection $\Delta \theta=4 M_{\text {Earth }} / R_{\text {Earth }}$ for a light ray grazing the Earth (in radians and then in seconds of arc). HINT: You can convert mass from traditional units (grams, say) to geometric units (centimeters, say) with the formula $M_{\mathrm{cm}}=G M_{\mathrm{grams}} / c^{2}$. It follows that the mass is $1 / 2$ the Schwarzschild radius.
4. Use the substitution $v=t+r+2 M \ln \left|\frac{r}{2 M}-1\right|$ to show that the Schwarzschild metric of number 1 can be written as

$$
d \tau^{2}=(1-2 M / r) d v^{2}-d v d r-r^{2} d \phi^{2}-r^{2} \sin ^{2} \phi d \theta
$$

