Special Relativity Homework, Set 3

1. The observer in frame S finds that a certain event A occurs at the origin of his coordinate system, and that a second event B occurs $2 \times 10^{-8} \mathrm{sec}$ later at the point $x=1200 \mathrm{~cm}, y=z=0 \mathrm{~cm}$. (a) Is there an inertial observer S^{\prime} for whom these two events are simultaneous? (b) If so, what is the speed and direction of motion of S^{\prime} relative to S ?
2. We now derive the relativistic addition of velocities rule that replaces the classical law invalidated by Einstein's postulates. Here the relative velocity of S^{\prime} with respect to S will be denoted β_{r}. Suppose a missile is fired from rocket S^{\prime} in a direction parallel to the x^{\prime} axis with velocity β^{\prime} relative to S. If the missile travels $\Delta x^{\prime} \mathrm{cm}$ in $\Delta t^{\prime} \mathrm{cm}$ of light travel time (as recorded by the rocket clocks), then $\beta^{\prime}=\Delta x^{\prime} / \Delta t^{\prime}$. Similarly, the speed of the missile as measured with laboratory rods and clocks is $\beta=\Delta x / \Delta t$. Using Equatons (91), show that $\beta=\frac{\beta^{\prime}+\beta_{r}}{1+\beta_{r} \beta^{\prime}}$. (Notice that for $\left|\beta^{\prime}\right| \ll 1$ and $\left|\beta_{r}\right| \ll 1$, the relativistic formula is approximated by the classical rule $\beta=\beta^{\prime}+\beta_{r}$.)
3. In the previous problem, show that if $\beta^{\prime}= \pm 1$, then $\beta= \pm 1$ also. (If the missile fired from the rocket is a light photon, then both observers will measure the photon's speed as unity. The invariance of the speed of light [Postulate 2] is therefore embodied in the relativistic law of addition of velocities.)
4. Define the imaginary-valued w by $w=i t$. Using the identities $\cosh \theta=\cos (i \theta)$ and $\sinh \theta=$ $-i \sin (i \theta)$, show that Equations (89) may be expressed as

$$
\begin{aligned}
x & =x^{\prime} \cos \left(i \theta_{r}\right)-w^{\prime} \sin \left(i \theta_{r}\right) \\
w & =x^{\prime} \sin \left(i \theta_{r}\right)+w^{\prime} \cos \left(i \theta_{r}\right)
\end{aligned}
$$

(Since these equations resemble those for a rotation of coordinates in the Cartesian plane, namely,

$$
\begin{aligned}
& x=x^{\prime} \cos (\theta)-y^{\prime} \sin (\theta) \\
& y=x^{\prime} \sin (\theta)+y^{\prime} \cos (\theta)
\end{aligned}
$$

the Lorentz transformation is sometimes described as an 'imaginary rotation.")

