Special Relativity (Differential Geometry) Homework, Set 5

1. Let $\vec{\alpha}(t)$ be a smooth curve in E^{3}, where t is an arbitrary parameter. Let $v(t)=d s / d t$, the speed at parameter value t. Then $\vec{\alpha}(t)=\frac{d \vec{\alpha}}{d s} \frac{d s}{d t}=v \vec{T}=\left\|\vec{\alpha}^{\prime}(t)\right\| \vec{T}$ and $\vec{T}^{\prime}(t)=\frac{d \vec{T}}{d s} \frac{d s}{d t}=k v \vec{N}$. Show that $k=\left\|\vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}\right\| / /\left\|\vec{\alpha}^{\prime}\right\|^{3}$. (Primes signify differentiation with respect to t here. HINT: You may assume that α^{\prime} and $\alpha^{\prime \prime}$ are orthogonal.) BONUS: Do without assuming the orthogonality.
2. Show that the plane curve $\vec{\alpha}(t)=(x(t), y(t))$ has curvature

$$
k(t)=\left|\frac{x^{\prime}(t) y^{\prime \prime}(t)-x^{\prime \prime}(t) y^{\prime}(t)}{\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right)^{3 / 2}}\right| .
$$

at $\vec{\alpha}(t)$.
3. As a special case of number 2 , show that the graph of $y=f(x)$ has curvature

$$
k(x)=\left|\frac{f^{\prime \prime}(x)}{\left(1+f^{\prime}(x)^{2}\right)^{3 / 2}}\right|
$$

at $(x, f(x))$.
4. Let $\vec{\alpha}(t)=(a \cos t, b \sin t), 0 \leq t \leq 2 \pi$. Since $x^{2} / a^{2}+y^{2} / b^{2}=1$, the image of $\vec{\alpha}$ is an ellipse. Compute its curvature $k(t)$ using the formula of number 2 at $t=0$ and $t=\pi / 2$. Sketch the ellipse $x^{2} / 4+y^{2}=1$ and its osculating circles at the points $(2,0)$ and $(0,1)$.

