Special Relativity (Differential Geometry)
 Homework, Set 7

1. Derive the formula $d s^{2}=d r^{2}+r^{2} d \theta^{2}$ for the differential of arc length in polar coordinates by substituting $x=r \cos \theta, y=r \sin \theta$ into the formula $d s^{2}=d x^{2}+d y^{2}$ for the differential of arc length in Cartesian coordinates.
2. For the torus given by

$$
\vec{X}(u, v)=((R+r \cos u) \cos v,(R+r \cos u) \sin v, r \sin u)
$$

where $0<r<R, u \in[0,2 \pi)$, and $v \in[0,2 \pi)$, compute the matrix $\left(g_{i j}\right)$, its determinant g, the inverse $\left(g^{i j}\right)$, and the unit normal vector \vec{U}.
3. Compute the surface area of the torus of number 2 .
4. The right circular cylinder $x^{2}+y^{2}=R^{2}$ may be parameterized as

$$
\vec{X}(u, v)=\left(R \cos \frac{u}{R}, R \sin \frac{u}{R}, v\right) .
$$

Compute the metric form $d s$. (If we endow the $u v$-plane with the Euclidean metric $d s^{2}=$ $d u^{2}+d v^{2}$, then the result of this exercise shows that any curve in the $u v$-plane and its image under \vec{X} on the cylinder have the same length. A smooth mapping, such as \vec{X}, which preserves lengths of curves is called a local isometry. An isometry is a local isometry that is one-to-one and onto.)

