Special Relativity (Differential Geometry) Homework, Set 8

1. Compute the second fundamental form of the helicoid $\vec{X}(u, v)=(u \cos v, u \sin v, b v)$ where b is a constant.
2. Let M be the hyperbolic paraboloid $z=\left(y^{2}-x^{2}\right) / 2$, and let P be the origin of E^{3}. Then $T_{P}(M)$ is the $x y$-plane. Show that the normal curvature of M at P in the direction of a unit vector $\vec{v}=(\cos \theta, \sin \theta, 0)$ is $K_{n}(\vec{v})=-\cos ^{2} \theta+\sin ^{2} \theta=-\cos 2 \theta$. What values of θ give the principal directions?
3. Let $\vec{X}\left(u^{1}, u^{2}\right)=\left(x\left(u^{1}, u^{2}\right), y\left(u^{1}, u^{2}\right), z\left(u^{1}, u^{2}\right)\right)$ be a surface. Show that

$$
L_{i j}=\operatorname{det}\left[\begin{array}{ccc}
x_{i j} & y_{i j} & z_{i j} \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right] / \sqrt{g}
$$

where, on the right-hand side, subscripts indicate partial differentiation.
4. Compute the Gauss curvature of the hyperbolic paraboloid $z=\left(y^{2}-x^{2}\right) / 2$ using the fact that this is a surface of the form $z=f(x, y)$.
5. Show that at each point of a surface of revolution, the two principal directions are along the meridian and parallel through that point. HINT: Use the bonus problem.

Bonus. (a) Show that if (at a certain point) $g_{12}=L_{12}=0$, then the principal curvatures are $L_{11} / g_{11}, L_{22} / g_{22}$, and the associated principal directions are \vec{X}_{1}, \vec{X}_{2}, respectively.
(b) Conversely, show that if \vec{X}_{1} and \vec{X}_{2} are principal, then $g_{12}=L_{12}=0$.

