Special Relativity (Differential Geometry) Homework, Set 9

1. Show that the geodesic curvature $k_{g}=\vec{U} \cdot \vec{\alpha}^{\prime} \times \vec{\alpha}^{\prime \prime}$ is given by

$$
k_{g}=k \vec{U} \cdot \vec{B}=k \cos \theta
$$

where k is the curvature of $\vec{\alpha}$ (as a curve in E^{3}), \vec{B} is the binormal vector of $\vec{\alpha}$, and θ (or $\pi-\theta)$ is the angle between the osculating plane of $\vec{\alpha}$ and the tangent plane of the surface.
2. Use the previous exercise to find the geodesic curvature of a circle of latitude on a sphere (a u-parameter curve as we have dealt with it).
3. Prove that a curve on a surface in E^{3} is a geodesic of that surface if and only if $k=\left|k_{n}\right|$ at every point of the curve.

