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REVIEW OF PROBABILITY RULES

Note. We start by recalling a couple of rules for the compu-

tation of probabilities. First, for the Multiplicative Rule for

Probabilities, if two events E1 and E2 are independent (that

is, the occurrence of one event does not affect the probability

of the other event occuring), P (E1) = p1, and P (E2) = p2,

then the probability of both E1 and E2 is

P (E1 and E2) = P (E1) × P (E2).

Second, by the Additive Rule for Probabilities, if events E1

and E2 are mutually exclusive (that is, both cannot occur

together), then the probability of either E1 or E2 occuring is

P (E1 or E2) = P (E1) + P (E2).

Let’s Illustrate these two rules with a standard “urn” problem.
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Example. Consider two urns, labeled Urn 1 and Urn 2, each

filled with red and white balls. Suppose that 100× p% of the

balls in each urn is red and 100× q% of the balls in each urn

is white. Choose a ball at random from each urn.

1. What is the probability of getting two red balls?

Solution. For this to occur, we must get a red ball from

Urn 1 (denote this event as R1) and a red ball from Urn

2 (denote this event as R2). Then, since these events are

independent,

P (R1 and R2) = P (R1) × P (R2) = p × p = p2.

2. What is the probabilty of getting two white balls?

Solution. With similar notation as above, we have

P (W1 and W2) = P (W1) × P (W2) = q × q = q2.

3. What is the probability of getting one red ball and one

white ball?

Solution. With the estabilished notation, this event can

occur in two different ways: (R1 and W2) or (W1 and R2).

Since these two events are mutually exclusive,

P ((R1 and W2) or (W1 and R2)) =

P (R1 and W2) + P (W1 and R2) =

P (R1) × P (W2) + P (W1) × P (R2) = p × q + q × p = 2pq.
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ONE-LOCUS/TWO ALLELES

Note. Let’s now shift our attention to genetic models. We

consider a one-locus/two-alleles model. Suppose the two al-

leles at this locus are denoted as A and a. The frequency

of allele A is the percentage (expressed in decimal form) of

alleles at the given locus which are the A allele. Denote this

frequency as p. In our model, then, the frequency of the a

allele is q = 1 − p. Suppose that a population has these fre-

quencies of A and a. Let’s now calculate the frequency of

the genotypes in the next generation. (Here, we are assuming

nonoverlapping, discrete generations.) The only way for an

offspring in the next generation to have genotype AA is to

inherit an A allele from each parent. The father contributes

an A allele with probability p and the mother contributes an

A allele with the same probability. The probability of both

of these events is, by the Multiplication Rule for Probability

(since the two events are independent) is p × p = p2:

P (A from father and A from mother) =

P (A from father) × P (A from mother) = p × p = p2.

Similarly, the probability of both parents contributing the a

allele to an offspring is q × q = q2 = (1 − p)2. It follows that
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the probability of a heterozygous offspring (since this is the

only other possibility) is

1 − (p2 + q2) = 1 − (p2 + (1 − p)2) = 1 − (p2 + 1 − 2p + p2)

= 2p − 2p2 = 2p(1 − p) = 2pq.

Another way to calculate the probability of a heterozygous

offspring is as follows. The probability that the father con-

tributes an A allele is p and the probability that the mother

contributes an a allele is q = (1 − p). So the offspring can

have genotype Aa in this way with probability pq:

P (A from father and a from mother) =

P (A from father) × P (a from mother) = p × q = pq.

However, the offspring can have the same heterozygous geno-

type by getting the A allele from the mother and the a allele

from the father—also an event with probability pq. So, again,

the probability of an Aa offspring is 2pq by the addition rule

of probabilities (since these are disjoint events):

P ((A from father and a from mother) or (a from father and A from mother))

= P (A from father and a from mother) + P (a from father and A from mother)

= pq + pq = 2pq.

This can be summarized in the following table.
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Maternal Allele (probability)

Paternal Allele (probability)

A (p) a (q)

A (p) AA (p2) Aa (pq)

a (q) Aa (pq) aa (q2)

Alternatively, we can accomplish the same computation by

squaring p + q: (p + q)2 = p2 + 2pq + q2. The conclusion

is that, regardless of the distribution of genotypes in the first

generation, after one generation of random mating (and sub-

sequently), the genotypes will be distributed according to the

frequencies given above.

Note. The biological assumptions here are that the allele fre-

quencies do not change and, therefore, the population experi-

ences no mutation, migration, drift, or selection with respect

to alleles A and a. We don’t usually think of mate selection as

something done randomly, but all that matters is that mating

be done randomly with respect to alleles A and a. For exam-

ple, you probably do not take blood type into consideration

when setting up a date!
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STATEMENT OF HARDY-WEINBERG

Note. We can summerize these observations in the Hardy-

Weinberg Law:

Hardy Weinberg Law. Consider a population which ex-

periences no mutation, migration, drift, or selection with

respect to a locus which contains two possible alleles, A

and a. Also assume discrete (nonoverlapping) genera-

tions. If the frequency of allele A is p (in both sexes),

then after one generation of random mating, the geno-

types and frequencies will be AA with frequency p2, Aa

with frequency 2pq, and aa with frequency q2.
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ABO BLOOD TYPE

Note. Blood type is mentioned above. This is a trait de-

termined by three alleles at a single locus. The alleles are

commonly denoted A, B, O. These alleles combine to give

the following phenotypic blood types: AA and AO (type A),

BB and BO (type B), AB (type AB), and OO (type O).

Denote the frequencies of alleles A, B, O as p, q, r respec-

tively. Under the assumptions of Hardy-Weinberg, we would

expect the genotypic frequencies: AA with frequency p2, AB

with frequency 2pq, AO with frequency 2pr, BB with fre-

quency q2, BO with frequency 2qr, and OO with frequency

r2. Notice that, again, these frequencies can be calculated

by squaring the appropriate multinomial. This time it is

(p + q + r)2 = p2 + 2pq + 2pr + q2 + 2qr + r2.
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Example. Suppose a population is in Hardy-Weinberg equi-

librium (that is, with genotypic frequencies as predicted by the

Hardy-Weinberg Law) with respect to blood type. Suppose

the population has 56% of individuals with blood type A and

25% of individuals with blood type O. Find the frequencies of

each of the alleles A, B, and O, and the frequencies of blood

types B and AB.

Solution. With the notation above, the frequency of indi-

viduals with blood type O is r2 and so r2 = 25% = 0.25.

Hence r = 0.50. Next, phenotypic blood type A is de-

termined by genotypes AA and AO and so has frequency

p2 + 2pr = p2 + 2p(0.50) = p2 + p. So set this equal to

56% = 0.56: p2 + p = 0.56 or p2 + p − 0.56 = 0. By the

quadratic equation,

p =
−1 ±

√
(1)2 − 4(1)(−0.56)

2(1)
=

−1

2
±

√
3.24

2
= −0.50 ± 0.90.

So p = −1.40 or p = 0.40. Since p is between 0 and 1,

it must be that p = 0.40. Therefore, since p + q + r = 1,

q = 1 − p − r = 1 − 0.40 − 0.50 = 0.10. Notice that the

9



frequency of type B individuals is

q2 + 2qr = (0.10)2 + 2(0.10)(0.50) = 0.11 = 11%

and the frequency of AB individuals is 2pq = 2(0.40)(0.10) =

0.08 = 8%. We then have:

freq(type A) + freq(type B) + freq(type AB) + freq(type O)

= 56% + 11% + 8% + 25% = 100%,

as expected.
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THE CHI-SQUARED TEST STATISTIC

Note. We encountered the χ2 test statistic in Section 4.5.

Recall that this is a measure of the difference between ob-

served data and the expected value of data based on some

hypothesis. If there are k categories of data with Oi and

Ei as the observed and expected values of the data appear-

ing in the ith category, respectively, then the test statistic

is
k∑

i=1

(Oi − Ei)
2

Ei
. Under a hypothesis of Hardy-Weinberg

equilibrium and known allele frequencies, we can find the pre-

dicted numbers of individuals of each genotype. The number

of degrees of freedom is computed as the number of cate-

gories (k in our notation) minus the number of parameters

estimated from the data (usually allele frequencies for a test

of Hardy-Weinberg) minus 1.
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Example. Consider a sample from a population with the

following numbers of the three possible genotypes in a one

locus/two alleles setting: The number of AA individuals in

the sample is 46, the number of Aa individuals in the sample

is 40, and the number of aa individuals in the sample is 14.

Use a χ2 test statistic to see if the population is in Hardy-

Weinberg equilibrium.

Solution. First, we use the sample to estimate the frequency,

p, of allele A (this estimation decreases the number of degrees

of freedom by 1). The number of individuals in the sample is

46 + 40 + 14 = 100, and so the sample contains 200 alleles.

The genotype AA individuals contain a total of 2×46 = 92 A

alleles and the genotype Aa individuals contain 40 A alleles.

So our estimation of p is p = (92+40)/200 = 0.66. Therefore

we calculate q as q = 1 − p = 1 − 0.66 = 0.34. Assuming

Hardy-Weinberg equilibrium (that is, our null hypothesis is

H0: “The population is in Hardy-Weinberg equilibrium”), we

calculate the expected number of AA individuals as:

Expected Number of AA Individuals = p2×(Population Size).

So we have that the expected number of AA genotype in-

dividuals is p2 × 100 = 0.662 × 100 = 43.56. Similarly, the
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expected number of Aa genotype individuals is 2pq × 100 =

2(0.66)(0.34) × 100 = 44.88 and the expected number of aa

genotype individuals is q2 = (0.34)2×100 = 11.56. Therefore

for the three categories of genotypes, we have the following

observed and expected values:

AA Aa aa

observed (Oi) 46 40 14

expected (Ei) 43.56 44.88 11.56

Next, we calculate the test statistic as:

3∑

i=1

(Oi − Ei)
2

Ei
=

(46 − 43.56)2

43.56
+

(40 − 44.88)2

44.88
+

(14 − 11.56)2

11.56

= 0.1367 + 0.5306 + 0.5150 = 1.1877.

Now we have 3 categories and have estimated 1 parameter.

So the number of degrees of freedom is 3 − 1 − 1 = 1. Recall

from Section 4.5, that the χ2 distribution with one degree

of freedom yields χ2
.100 = 2.70554 and χ2

.050 = 3.84146. Since

our test statistic is smaller than both of these, we fail to reject

the null hypothesis that the population is in Hardy-Weinberg

equilibrium.
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AN OBSERVATION ABOUT SAMPLE SIZE

Note. The following example illustrates how sample size can

affect a hypothesis test.

Example. Consider a sample from a population with the

following numbers of the three possible genotypes in a one

locus/two alleles setting: The number of AA individuals in

the sample is 230, the number of Aa idividuals in the sample

is 200, and the number of aa individuals in the sample is 70.

Use a χ2 test statistic to see if the population is in Hardy-

Weinberg equilibrium.

Solution. This sample is directly proportional to the one in

the previous example, only it is five times larger. Again, we

find p = 0.66 and q = 0.34. Since the sample size is 500, we

get the following expected values:

AA Aa aa

observed (Oi) 230 200 70

expected (Ei) 217.8 224.4 57.8

The test statistic is:
3∑

i=1

(Oi − Ei)
2

Ei
=

(230 − 217.8)2

217.8
+

(200 − 224.4)2

224.4
+

(70 − 57.8)2

57.8
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= 0.6834 + 2.6531 + 2.5751 = 5.9116.

Since we now have the test statistic larger than χ2
.050, we see

that we can reject the null hypothesis that the population is

in Hardy-Weinberg equilibrium with 1− .050 = 0.950 = 95%

confidence.

Note. Why does the second example have such a dramat-

ically different conclusion from the first? Afterall, the first

and second samples are directly proportional in terms of the

number of individuals in each category! The answer lies in the

confidence we can put in large samples versus the confidence

we can put in small samples. Notice that in both examples,

the expected values differ somewhat from the observed val-

ues. Since a small sample can differ from the the population

proportions with a higher probability than a large sample, we

can put more confidence in the larger sample. That is, we are

more confident that the large sample reflects the true pop-

ulation parameters and hence that the differences between

expected and observed numbers are actually present in the

population.
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