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Note. In this section, we introduce some ideas from graph

theory and use them to quantify the level of inbreeding of an

individual.

Note. Informally, a graph is a mathematical structure, which

is usually represented by a collection of dots, called vertices,

some of which are connected by line segments (or curves),

called edges. This idea should not be confused with the use

of the term “graph” in the setting of graphing a function.

Definition. A graph G is a set V of vertices,

V = {v1, v2, . . . , vn}

and a set E of unordered pairs of elements of V, called edges.
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Note. The edge consisting of vertices v1 and v2 is denoted

(v1, v2) or (v2, v1). We can draw pictures of a graph as follows.

A graph G with vertex set V = {0, 1, 2, 3} and edge set

E = {(0, 1), (1, 2), (2, 3), (3, 0)} can be represented as:

Definition. A complete graph on v vertices, denoted Kv, is

a graph with vertex set V which satisfies |V | = v, and with

edge set E = {(vi, vj) | vi, vj ∈ V, i 6= j}.

3



Example. Here are some examples of complete graphs:

Exercise. How many edges does Kv have (in terms of v)?

Definition. A walk in a graph is a sequence

W = v0e1v1e2v2 · · · vn−1envn

which starts and ends with a vertex and alternates between

vertices and edges, such that each edge in the sequence has

as its two endpoints the vertices before it and after it in the

sequence. If the vertices of the walk are distinct (i.e., all

different) then the walk is called a path.
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Example. Two different walks from vertex 0 to vertex 4 in

K5 are:

The first walk is a path, but the second one is not (since it

repeats vertex 2).

Definition. A graph G in which there is a path from any

vertex to any other vertex is a connected graph.

Note. Graphs which are not connected can be broken into

connected components. Consider:
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Definition. A cycle on n vertices, denoted Cn, is a graph

with vertex set V = {v1, v2, . . . , vn} and edge set

E = {(v1, v2), (v2, v3), · · · , (vn−1, vn), (vn, v1)}.

Example. A 5-cycle, C5, is:

Exercise. How many edges does a cycle on n vertices have?

Definition. Let graph G1 have vertex set V1 and edge set

E1, and let graph G2 have vertex set V2 and edge set E2. Then

graph G1 is a subgraph of graph G2 if V1 ⊂ V2 and E1 ⊂ E2.
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Exercise. Does this graph have a subgraph which is a cycle?

Definition. A graph which has no subgraphs which are

cycles is acyclic. An acyclic connected graph is a tree.

Example. There are 3 trees on 5 vertices:

Example. What are the 6 trees on 6 vertices?

Exercise. How any edges does a tree on v vertices have?
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Note. We are primarily interested in applying graphs to ge-

nealogies in this section. We do so by letting the individuals of

the geneaology be represented by vertices and the relationship

of parent-offspring be represented by edges. So the traditional

genealogy in represented as a graph as follows:

Note. In calculating the inbreeding coefficient, we want to

focus on only two individuals in a population. Suppose, for

example, that the two red individuals in the genealogy above

mate to produce an offspring. Since the two red parents are

related (they share a pair of grandparents, and so are cousins),

the resulting offspring is inbreed. Now the graph above is clut-

tered with individuals who do not affect the relatedness of the

two red individuals. So we crop off the unnecessary individu-

als by keeping the common ancestors (the grandparents) and

the intervening individuals which link the red individuals to

the common ancestors. We get the following:
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Adding the offspring (in green) of the red individuals produces

the graph:

We now find all cycles in the graph which contain the offspring

(in green) and a common ancestor (in blue). There are two

such cycles (in blue):
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Note. As seen previously, inbreeding has the effect on a

population of reducing heterozygosity (relative to the level of

heterozygosity expected from Hardy-Weinberg), though it will

not, by itself, change allele frequencies.

Note. For an inbred individual, we define the inbreeding co-

efficient F as the probability that the two alleles of a locus

chosen at random are identical by descent (IBD). By identi-

cal by descent, we mean that the two alleles are descendants of

the same allele, with one copy being passed from an ancestor

down a lineage to the father and then to the individual, and

the other copy being passed from the same ancestor down the
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lineage to the mother and then to the individual. Since an

individual is inbreed, by definition, if the mother and father

are related, we will calculate F by following the passage of the

allele in question from the ancestor to the father the mother,

and finally to the individual.

Note. Consider the offspring of two half-cousins (that is, the

offspring of two individuals who share a single grandparent).

The graph representing the relevant genealogy is:

We start by assuming that individual A is not inbreed. The

probability that A passes the same allele through gametes to

individuals B and C is 1/2. The probability that B passes

the allele inherited from A on to D is 1/2. Similarly, the

probability that C passes the allele inherited from A on to

E is 1/2. Next, the probability that the allele D inherited

from B is passed on to I is 1/2, and the probability that
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the allele E inherits from C is passed on to I is 1/2. We now

multiply these probabilities (of independent events) to get the

probability that individual I has inherited the same allele at

the given locus along the two lines of descent as: (1/2)5 =

1/32. Therefore the inbreeding coefficient of individual I is

FI = 1/32. Notice that each step in the above process is

represented by a vertex in the unique path joining the parents

of I .

Note. Next, let’s assume that individual A is inbred with

inbreeding coefficient FA. Then as before, the probability that

A passes on the same allele to both of it’s offspring is 1/2 .

However, since A is inbreed, it is possible that both of A’s

alleles at the relevant locus are already identical by descent.

The probability of this, by definition, is FA. So if A passes

one of its alleles to one offspring and passes the other allele

to the other offspring (an event with probability 1/2), then

the offspring of A will still have alleles which are identical by

descent. Hence the probability that both of A’s offspring get

alleles which are identical by descent is 1/2+FA×1/2 = (1+

FA)/2. We then compute the probabilities of the alleles being

passed on to individual I as above. This time, the inbreeding

coefficient for I is FI = (1/2)4×(1+FA)/2 = (1/2)5(1+FA).
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Note. If the parents of an individual have more than one

common ancestor, we simply compute the contribution to the

inbreeding coefficient of the offspring by summing along each

of the paths from the parents through a common ancestor, and

then sum. For example, consider the inbreeding coefficient of

the offspring of cousins. The cousins share two common an-

cestors (their grandparents) and, as seen above, this produces

two paths between the cousins which pass through a single

common ancestor:

If the grandparents are not inbreed, then the inbreeding

coefficient for individual I is FI = 1/32 + 1/32 = 1/16. If

the two common ancestors, denoted GF and GM , are inbred
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with inbreeding coefficients FGF and FGM respectively, then

the inbreeding coefficient of I is

FI = (1/2)5(1 + FGF ) + (1/2)5(1 + FGM).

Note. Now let’s consider a more complicated genealogy. The

following is based on work done by Sewall Wright concerning

the breeding of cattle (Wright 1922). Consider the genealogy:

We wish to find the inbreeding coefficient of individual RG,

FRG. To do so, we need to find the common ancestors of the

parents of RG, namely RDG and PR. Tracing through the

graph, we find that the common ancestors are CE and LR.

Notice that there are two different paths between the parents
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which pass through CE and two different paths which pass

through LR. This leads to the following four paths:

Next,we count the number of vertices in each path from RDG

to PR. This yields two paths of length 4 and two paths of

length 7. So we have FRG = (1/2)4+(1/2)4+(1/2)7+(1/2)7 =

0.140625.
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Excercise. Suppose two unrelated individuals have two off-

spring, a first generation male and female. Next, the first

generation male and female mate with each other to produce

a second generation male and female. The second generation

male and female produce a third generation male and female,

and so forth. This is repeated mating of siblings.

Find the inbreeding coefficient for the second generation sib-

lings, F2, and the third generation siblings, F3. What is the

inbreeding coefficient of the nth generation siblings, Fn, in

terms of the inbreeding coefficients of the previous genera-

tions. (HINT: This one requires mathematical induction and

is tricky! The answer is Fn = (1/2)Fn−1+(1/4)Fn−2+(1/4).)
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