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FITNESS VALUES

Note. We start our quantitative exploration of selection by

again studying a one locus/two alleles model. Suppose the

two alleles are A1 and A2 and so (as usual, assuming diploid

organisms) the possible genotypes are A1A1, A1A2, and A2A2.

We start by assuming random mating (along with the other

assumptions of Hardy-Weinberg, except we will have selection

this time) and that zygotes are conceived at the proportions

expected by the Hardy-Weinberg principle. That is, the ratio

of zygote genotypes A1A1 : A1A2 : A2A2 is p2 : 2pq : q2

where p is the frequency of A1 and q = 1− p is the frequency

of A2.

Note. We now suppose that selection plays a role and that

the conceived zygotes are not equally successful in reaching a

reproductive state (perhaps they do not survive to reproduc-

tive age or are sterile). To set up the computations, suppose

the zygotes reach a reproductive state in the genotypic ratio

A1A1 : A1A2 : A2A2 of w11p
2 : 2w12pq : w22q

2. That is, we

define the relative fitness values for each genotype as

Genotype A1A1 A1A2 A2A2

Relative Fitness w11 w12 w22
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In Hardy-Weinberg equilibrium, we know that the allele fre-

quencies and genotypic frequencies remain constant. However,

with the presence of selection, we expect these parameters to

change with time.

Example. Suppose a population of 100 has genotypic ratio

A1A1 : A1A2 : A2A2 of 3 : 5 : 2. What are the number of

individuals of each genotype.

Solution. First, sum 3 + 5 + 2 = 10. Next, divide the

population size by this sum: 100/10 = 10. Now multiply each

number in the ratio by this quotient: 10× 3 : 10× 5 : 10× 2,

or 30 : 50 : 20. So the number of A1A1 individuals is 30, the

number of A1A2 is 50, and the number of A2A2 is 20.

Note. Since we are starting with a population in which the

frequency of A1 is p and the frequency of A2 is q, denote the

frequencies of these alleles in the next generation as p′ and

q′, respectively (we are assuming discrete generations). To

calculate p′ and q′, we find the ratio A1 : A2 in gametes. Now

an A1A1 individual produces 100% of its gametes with the A1

allele, A1A2 individuals produce 50% of their gametes with
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the A1 allele, and A2A2 individuals produce 0% of their ga-
metes with the A1 allele. Similar percentages can be calcu-
lated for gametes containing the A2 allele. As a result, the
ratio A1 : A2 in gametes which produce the next generation
is

(w11p
2×100%+2w12pq×50%+w22q

2×0%) : (w11p
2×0%+2w12pq×50%+w22q

2×100%),

which simplifies to (w11p
2 + w12pq) : (w12pq + w22q

2). This

ratio is the same as p′ : q′, and so

p′

q′
=

w11p
2 + w12pq

w12pq + w22q2
or p′ =

w11p
2 + w12pq

w12pq + w22q2
q′.

Now p′ + q′ = 1, so

p′ + q′ =

(
w11p

2 + w12pq

w12pq + w22q2
q′

)
+ q′ = 1

q′
(

w11p
2 + w12pq

w12pq + w22q2
+ 1

)
= 1

q′
(

w11p
2 + w12pq

w12pq + w22q2
+

w12pq + w22q
2

w12pq + w22q2

)
= 1

q′
(

w11p
2 + 2w12pq + w22q

2

w12pq + w22q2

)
= 1

or

q′ =
w12pq + w22q

2

w11p2 + 2w12pq + w22q2
.
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Next,

p′ = 1 − q′ = 1 − w12pq + w22q
2

w11p2 + 2w12pq + w22q2

=
w11p

2 + 2w12pq + w22q
2

w11p2 + 2w12pq + w22q2
− w12pq + w22q

2

w11p2 + 2w12pq + w22q2

=
w11p

2 + w12pq

w11p2 + 2w12pq + w22q2
.

Define the average fitness of the population as

w = w11p
2 + 2w12pq + w22q

2.

Then we have

p′ =
w11p

2 + w12pq

w
and q′ =

w12pq + w22q
2

w
.
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CHANGES IN ALLELE FREQUENCIES

Note. Now, lets see how selection has affected the frequency

of A1. Computing the change in p over one generation of

selection, we get

p′ − p =
w11p

2 + w12pq

w
− p = p

(w11p + w12q

w
− 1

)

= p

(
w11p + w12q − (w11p

2 + 2w12pq + w22q
2)

w

)

=
p

w

(
w11(p − p2) + w12(q − 2pq) − w22q

2
)

=
p

w

(
w11p(1 − p) + w12q(1 − 2p) − w22q

2
)

=
p

w

(
w11pq + w12q(q − p) − w22q

2
)

=
pq

w
(w11p + w12(q − p) − w22q)

=
pq

w
(p(w11 − w12) + q(w12 − w22)) .

If we represent the change in p as ∆p, where ∆ is the Greek

letter delta, then we have

∆p =
pq

w
(p(w11 − w12) + q(w12 − w22) .
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Note. We now turn our attention to the long term behavior

of the value of p. In particular, we are interested in equi-

librium points at which ∆p = 0. First, observe that if

p = 0 or q = 0, then ∆p = 0. The biological interpreta-

tions of these two equilibria are (1) 100% of the alleles are

A2 (when p = 0), and (2) 100% of the alleles are A1 (when

q = 0). In each case, the locus is at fixation and genetic di-

versity has been lost. We can also have an equilibrium when

p(wqq − w12) + q(w12 − w22) = 0, or equivalently when

p(w11 − w12) + (1 − p)(w12 − w22) = 0. (∗)
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Note. Denote the value of p in this equation as peq. Then

peq =
w22 − w12

w11 − 2w12 + w22
, if w11−2w12 +w22 6= 0. In order for

peq to make sense, we need (in interval notation) peq ∈ [0, 1]

(or 0 ≤ peq ≤ 1). We analyze this in three cases:

Case 1. Suppose w11 − 2w12 + w22 = 0. From equation (∗)
we see that

peq(w11 − w12) + (1 − peq)(w12 − w22) = 0

peq(w11 − 2w12 − w22) + w12 − w22 = 0

peq(0) + w12 − w22 = 0

w12 = w22.

Now substituting w12 = w22 into w11 − 2w12 + w22 = 0

gives w11 − 2w12 + w12 = w11 − w12 = 0 or w11 = w12. So

w11 = w12 = w22 and there is no selective difference between

genotypes A1A1, A1A2, and A2A2. Strictly speaking, every

value of p ∈ [0, 1] is an equilibrium point and the population

remains in Hardy-Weinberg equilibrium.

Case 2. Suppose 0 ≤ peq =
w22 − w12

w11 − 2w12 + w22
≤ 1 and

w11 − 2w12 + w22 > 0. Then

0 < w22 − w12 < w11 − 2w12 + w22

w12 < w22 < w11 − w12 + w22

or w12 < w22 and 0 < w11−w12, or w12 < w22 and w12 < w11.
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So the fitness of the heterozygote A1A2 is less than the fitness

of either of the homozygotes, A1A1 and A2A2. This is called

the deleterious heterozygote model.

Case 3. Suppose 0 ≤ peq =
w22 − w12

w11 − 2w12 + w22
≤ 1 and

w11 − 2w12 + w22 < 0. Then

0 ≥ w22 − w12 ≥ w11 − 2w12 + w22

w12 ≥ w22 ≥ w11 − w12 + w22

or w12 ≥ w22 and 0 ≥ w11 − w12, or w12 ≥ w22 and w12 ≥
w11. So the fitness of the heterozygote is greater than that of

either homozygote. This is called the heterozygote advantage

model.
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STABILITY

Note. In any physical system that involves change with time

(in the most general case, called a dynamical system), two

properties are of interest. The first, as explored above, is

the equilibria—the states of the system which do not change

with time. The second property, called stability, is a bit more

subtle. We discuss it through analogy. Imagine a small ball

which rolls around on a smooth surface. If the ball is sitting at

the bottom of a trough or well, then the ball is said to be in a

stable equilibrium. If the ball is disturbed by a small amount,

then the ball will return to the equilibrium. If the ball is hit

hard it can be knocked away from the bottom of the well and

may go to some other equilibrium state. However, the idea of

stability only involves “small” perturbations. Next, imagine

the ball precariously perched at the top of a hill. In every

direction, the hill slopes down, so if the ball is nudged slightly

then it will not return to the equilibrium at the top of the

hill, but will roll away to some other state. For this reason,

such an equilibrium is called an unstable equilibrium. Finally,

imagine a hillside which slopes downhill from the left to the

right, but at one point the hill levels off (the profile of such a
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hill might look like the graph of the function y = −x3 which

is “flat” right at x = 0 and is sloping downhill elsewhere). In

this case, if the ball is sitting right on the point where the hill is

level, then the ball is in equilibrium. The behavior of the ball

when perturbed depends on the direction of the perturbation.

If the ball is pushed slightly downhill, then the ball will roll

away (like an unstable equilibrium). If the ball is pushed

slightly uphill, then the ball will roll back downhill towards

the equilibrium (like a stable equilibrium). For these reasons,

such an equilibrium is said to be a semi stable equilibrium.

The following picture illustrates these three cases:

Now this is a description of the idea of stability in a very infor-

mal way. In the case of a semi stable equilibrium, you might

think that displacing the ball slightly uphill will cause it to
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roll back towards the equilibrium, but it will gain momentum

and roll right past the semi stable equilibrium point. Simi-

larly, perturbing the ball at the stable equilibrium will cause

it to roll back to the stable equilibrium point, but momentum

should carry it past the equilibrium, slightly uphill where it

will again roll back towards the stable equilibrium—in fact,

we might think of the ball as oscillating back and forth at the

bottom of the well. While we could explore this behavior in

more detail, let’s view these “momentum” ideas simply as ar-

tifacts of our model. Perhaps you can think of the surface as

kind of “sticky” so that the ball slows down as it approaches

an equilibrium and will slowly glide back to the equilibrium

in the case of a stable equilibrium (or in the case of a semi

stable equilibrium from one side). In continuous dynamical

systems, this is the type of behavior displayed. In fact, in such

systems, the ball will move slower and slower as it approaches

an equilibrium and will never reach the equilibrium (in finite

time) but will asymptotically approach the equilibrium—the

equilibrium will be the limit of the system.
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Note. The reason to study stability of an equilibrium is

because nature is more complicated and imprecise than our

models! We would expect any natural system to eventually

experience some type of disturbance, and so it is highly im-

probable for a system to stay in an unstable or semi stable

equilibrium state. The long term behavior of a natural system

should be to go to some stable equilibrium state.
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EXAMPLES

Example. Consider a value x which changes periodically

according to the equation ∆x = (x − 5)(x − 10)2(15 − x).

Find the equilibria and classify their stability.

Solution. To find equilibria, set ∆x = 0: ∆x = (x− 5)(x−
10)2(15−x) = 0. So the equilibrium points are x = 5, x = 10,

and x = 15. To analyze the stability of each equilibria, we

need to know how x changes “near” the equilibria. That

is, we need to know where x is increasing and where it is

decreasing. This information is contained in the sign of ∆x.

Now ∆x is either positive, zero, or negative. We have found

the three points where it is 0, so this breaks the real number

line into four pieces (or intervals) and the sign of ∆x is the

same throughout each of these pieces (since ∆x is a continuous

function of x—this will be spelled out in more detail later in

the form of the Intermediate Value Theorem). So we choose

a “test value” from each of the four pieces (intervals) and the

sign of ∆x at the test value gives the sign of ∆x throughout

the interval. We use the standard interval notation (a, b) to

mean all numbers x such that a < x < b. Consider:
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interval (−∞, 5) (5, 10) (10, 15) (15,∞)

test value k 0 6 11 16

∆x at x = k (−5)(−10)2(15) = −7500 (1)(−4)2(9) = 144 (6)(1)2(4) = 24 (11)(6)2(−2) = −792

sign of ∆x − + + −
behavior of x decreasing increasing increasing decreasing

←− −→ −→ ←−

Now consider how x changes for x near 5. If x is slightly less

than 5, then x decreases (away from 5) and if x is slightly

greater than 5, then x increases (away from 5). Therefore,

the equilibrium x = 5 is an unstable equilibrium. Next, for x

slightly less than equilibrium value 10, x increases (away from

10). So the equilibrium x = 10 is a semi stable equilibrium.

Finally, for x slightly less than 15, x increases (toward 15)

and for x slightly greater than 15, x decreases (toward 15).

Hence the equilibrium x = 15 is a stable equilibrium.
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Note. Now let’s analyze the stability of the equilibria for

some of our selection models. Consider the heterozygote ad-

vantage model in which w12 > w11 and w12 > w22. We have

an equilibrium at

peq =
w22 − w12

w11 − 2w12 − w22
=

w12 − w22

2w12 − w11 − w22

and

∆p =
pq

w
(p(w11 − w12) + q(w12 − w22)) =

pq

w
(p(w11 − 2w12 + w22) + (w12 − w22)) .

In this case, p, q, and w are each positive, so the sign of ∆p

depends only on the sign of p(w11−2w12+w22)+(w12−w22).

First, choose a test value of p slightly less than peq. Since

2w12 − w11 − w22 > 0, we can take as our test value p =
k

2w12 − w11 − w22
where k < w12 − w22. For this test value,

p(w11−2w12+w22)+(w12−w22) =
k

2w12 − w11 − w22
(w11+2w12+w22)+(w12−w22)

= −k + (w12 − w22) > 0.

So for p less than peq, ∆p > 0 and p increases towards peq.
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Next, choose a test value of p slightly greater than peq, say

p =
k′

2w12 − w11 − w22
where k′ > w12 − w22. For this test

value,

p(w11−2w12+w22)+(w12+w22) =
k′

2w12 − w11 − w22
(w11+2w12+w22)+(w12−w22)

= −k′ + (w12 − w22) < 0.

So for p greater than peq, ∆p < 0 and p decreases towards peq.

Therefore, with the heterozygote advantage, the equilibrium

is stable. Biologically, this means that selection maintains the

presence of both the A1 and A2 alleles (and hence polymor-

phism is maintained through selection). In fact, if we graph

the average fitness of the population, w, as a function of p, we

see that it is a parabola which opens downward with formula

w = p2w11 + 2pqw12 + q2w22 = p2w11 + 2p(1 − p)w12 + (1 − p)2w22

= p2(w11 − 2w12 + w22) + 2p(w12 − w22) + w22.

Recall that the vertex of a parabola with formula y = ax2 +

bx + c has x-coordinate
−b

2a
. Therefore the vertex of the

parabola determined by the graph of w occurs at the p-value

−2(w12 − w22)

2(w11 − 2w12 + w22)
=

w22 − w12

w11 − 2w12 + w22
= peq.
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Therefore, in the heterozygote advantage model, selection is

expected to produce allele frequencies which produce a max-

imum of w (since the graph of w is an opening downward

parabola, the vertex is the highest point on the graph). That

is, in this case, selection acts to maximize average fitness of

the population—not exactly “survival of the fittest,” but rem-

iniscent of it.
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EXERCISES

Exercise. Show that the average fitness of a population is

the expected value of the fitness of a randomly chosen indi-

vidual.

Exercise. Find the equilibrium points of ∆x = x2(x −
5)(7 − x). Find the stability of each equilibrium point. If

∆x is expressed as a polynomial function in factored form,

what properties of the factors determine the stability of the

corresponding equilibrium point?

Exercise. Explore the stability of peq = 1 when w11 =

w12 > w22 and when w11 = w12 < w22. Since this is a case of

fixation, explain how biologically that p might be perturbed

to less than 1.

Exercise. Explore the stability of peq in the deleterious het-

erozygote model. What is the expected long term behavior of

allele frequencies of such a population? Discuss the biological

significance of these results.
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