Vector Calculus

Chapter 3. Higher-Order Derivatives; Maxima and Minima 3.5. The Implicit Function Theorem—Proofs of Theorems

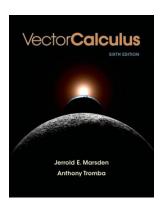


Table of contents

1 Theorem 3.11. Special Implicit Function Theorem

Vector Calculus August 3, 2022 2 / 4

Theorem 3.11. Special Implicit Function Theorem

Theorem 3.11. Special Implicit Function Theorem.

Suppose that $F: \mathbb{R}^{n+1} \to \mathbb{R}$ has continuous partial derivatives. Denoting points in \mathbb{R}^{n+1} by (\mathbf{x}, z) , where $\mathbf{x} \in \mathbb{R}^n$ and $z \in \mathbb{R}$, assume that (\mathbf{x}_0, z_0) satisfies

$$f(\mathbf{x}_0, z_0) = 0$$
 and $\frac{\partial F}{\partial z}(\mathbf{x}_0, z_0) \neq 0$.

Then there is a ball U containing \mathbf{x}_0 in \mathbb{R}^n and a neighbor V of z_0 in \mathbb{R} such that there is a unique function $z=g(\mathbf{x})$ defined for $\mathbf{x}\in U$ and $z\in V$ that satisfies $F(\mathbf{x},g(\mathbf{x}))=0$. Moreover, if $\mathbf{x}\in U$ and $z\in V$ satisfy $F(\mathbf{x},z)=0$, then $z=g(\mathbf{x})$. Finally, $z=g(\mathbf{x})$ is continuously differentiable, with the derivative given by

$$\mathbf{D}[g(\mathbf{x})] = -\frac{1}{\frac{\partial F}{\partial z}(\mathbf{x}, z)} \mathbf{D}_{\mathbf{x}}[F(\mathbf{x}, z)] \bigg|_{z=g(\mathbf{x})},$$

where $\mathbf{D_x}[F]$ denotes the (partial) derivative of F with respect to the variable \mathbf{x} ; that is, we have $\mathbf{D_x}[F] = [\partial F/\partial x_1, \partial F/\partial x_2, \dots, \partial F/\partial x_n]$.

() Vector Calculus August 3, 2022

3 / 4

Theorem 3.11 (continued 1)

Proof.

Vector Calculus August 3, 2022 4 / 4