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Euclidean Geometry

Euclid (325 bce – 265 bce)

Note. (From An Introduction to the History of Mathematics, 5th

Edition, Howard Eves, 1983.) Alexander the Great founded the city of

Alexandria in the Nile River delta in 332 bce. When Alexander died

in 323 bce, one of his military leaders, Ptolemy, took over the region of

Egypt. Ptolemy made Alexandria the capitol of his territory and started

the University of Alexandria in about 300 bce. The university had lecture

rooms, laboratories, museums, and a library with over 600,000 papyrus

scrolls. Euclid, who may have come from Athens, was made head of the

department of mathematics. Little else is known about Euclid.
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The eastern Mediterranean from

“The World of the Decameron” website.

Euclid’s Elements consists of 13 books which include 465 propositions.

American high-school geometry texts contain much of the material from

Books I, III, IV, VI, XI, and XII. No copies of the Elements survive from

Euclid’s time. Modern editions are based on a version prepared by Theon

of Alexandria, who lived about 700 years after Euclid. No work, except

for the Bible, has been more widely used, edited, or studied, and probably

no work has exercised a greater influence on scientific thinking.
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Notes. The Element’s contains a number of definitions. An attempt to

define everything is futile, of course, since anything defined must be defined

in terms of something else. We are either lead to an infinite progression

of definitions or, equally bad, in a circle of definitions. It is better just

to take some terms as fundamental and representing something intuitive.

This is often the case in set theory, for example, where the terms set and

element remain undefined. We might be wise to take the terms “point”

and maybe “line” as such. Euclid, however, sets out to define all objects

with which his geometry deals. For historical reasons we reproduce some of

these definitions. (All quotes from The Elements are from The Thirteen

Books of Euclid’s Elements, Translated from the text of Heiberg with

Introduction and Commentary by Sir Thomas L. Heath, Second Edition,

Dover Publications, 1956.)
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Definitions. From Book I:

1. A point is that which has no part.

2. A line is breadthless length.

3. The extremities of a line are points.

4. A straight line is a line which lies evenly with the points on itself.

5. A surface is that which has length and breadth only.

6. The extremities of a surface are lines.

7. A plane surface is a surface which lies evenly with the straight lines on itself.

8. A plane angle is the inclination to one another of two lines in a plane which meet one another

and do not lie in a straight line.

9. And when the lines containing the angle are straight, the angle is called rectilinear.

10. When a straight line set up on a straight line makes the adjacent angles equal to one another,

each of the equal angles is right, and the straight line standing on the other is called a

perpendicular to that on which it stands.

11. An obtuse angle is an angle greater than a right angle.

12. An acute angle is an angle less than a right angle.

13. A boundary is that which is an extremity of anything.

14. A figure is that which is contained by any boundary or boundaries.

15. A circle is a plane figure contained by one line such that all the straight lines falling upon it

from one point among those lying within the figure are equal to one another;

16. And the point is called the center of the circle.

17. A diameter of the circle is any straight line drawn through the center and terminated in both

directions by the circumference of the circle, and such a straight line also bisects the circle.

18. A semicircle is the figure contained by the diameter and the circumference cut off by it. And

the center of the semicircle is the same as that of the circle.
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19. Rectilinear figures are those which are contained by straight lines, trilateral figures being those

contained by three, quadrilateral those contained by four, and multilateral those contained by

more than four straight lines.

20. Of lateral figures, and equilateral triangle is that which has its three sides equal, an isosceles

triangle that which has two of its sides alone equal, and a scalene triangle that which has its

three sides unequal.

21. Further, of trilateral figures, a right-angled triangle is that which has a right angle, an obtuse-

angled triangle that which has an obtuse angle, and an acute-angled triangle that which has

its three angles acute.

22. Of quadrilateral figures, a square is that which is both equilateral and right-angled; an oblong

that which is right-angled but not equilateral; a rhombus that which is equilateral but not

right-angled; and a rhomboid that which has its opposite sides and angles equal to one another

but is neither equilateral nor right-angled. And let quadrilaterals other than these be called

trapezia.

23. Parallel straight lines are straight lines which, being in the same plane and being produced

indefinitely in both directions, do not meet one another in either direction.

Note. Most of these terms are probably familiar to you. However, you

may find some of the definitions rather quaint (especially the first seven).
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Postulates. Euclid states five postulates. Here are the postulates as

stated in The Elements and a restatement in more familiar language:

1. To draw a straight line from any point to any point. There is one

and only one straight line through any two distinct points.

2. To produce a finite straight line continuously in a straight line. A

line segment can be extended beyond each endpoint.

3. To describe a circle with any center and distance. For any point

and any positive number, there exists a circle with the point as center

and the positive number as radius.

4. That all right angles are equal to one another.

5. That, if a straight line falling on two straight lines make the inte-

rior angles on the same side less than two right angles, the two

straight lines, if produced indefinitely, meet on that side on which

are the angles less than the two right angles.

Note. If you have had a college-level geometry course, then these original

postulates may seem to lack rigor. In fact, the terminology is not even

very modern. For example, today we distinguish between an angle and its

measure. In Euclid, the measure of angles is not discussed, but comparing

angles to right angles or two right angles is common.

Note. It is the fifth postulate, and its logical equivalents, with which we

have the greatest interest.
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Note. The Elements contain many assumptions — some stated and

some not. Some of the stated assumptions are the five postulates above.

Euclid lists other assumptions as “Common Notions” but in contemporary

language we would consider them as more postulates (or synonymously,

axioms).

Common Notions. Euclid’s five common notions are a bit clearer than

his postulates:

1. Things which are equal to the same thing are also equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

Note. One of Euclid’s assumptions which is not explicitly stated is the

fact that he takes lines to be infinite in extent. This is implied by Postu-

late 3 which guarantees the existence of arbitrarily large circles. Also, in

Proposition 12, Euclid refers to an “infinite straight line.”

Note. Euclid is interested in establishing the existence of objects. When

showing existence, he often gives a constructive way of finding the claimed

object. Now let’s list the results of Book I and look at a few of Euclid’s

proofs.
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The Propositions of Book I.

Proposition 1. On a given finite straight line to construct an equilateral triangle.

Proposition 2. To place at a given point (as an extremity) a straight line equal to a given straight

line.

Proposition 3. Given two unequal straight lines, to cut off from the greater a straight line equal

to the less.

Proposition 4. If two triangles have the two sides equal to two sides respectively, and have the

angles contained by the equal straight lines equal, they will also have the base equal to the base,

the triangle will be equal to the triangle, and the remaining angles will be equal to the remaining

angles respectively, namely those which the equal sides subtend.

Proposition 5. In isosceles triangles the angles at the base are equal to one another, and, if the

equal straight lines be produced further, the angles under the base will be equal to one another.

Proposition 6. If in a triangle two angles be equal to one another, the sides which subtend the

equal angles will also be equal to one another.

Proposition 7. Given two straight lines constructed on a straight line (from its extremities) and

meeting in a point, there cannot be constructed on the same straight line (from its extremities),

and on the same side of it, two other straight lines meeting in another point and equal to the former

two respectively, namely each to that which has the same extremity with it.

Proposition 8. If two triangles have the two sides equal to two sides, respectively, and have also

the base equal to the base, they will also have the angles equal which are contained by the equal

straight lines.

Proposition 9. To bisect a given rectilinear angle.

Proposition 10. To bisect a given finite straight line.

Proposition 11. To draw a straight line at right angles to a given straight line from a given point

on it.

Proposition 12. To a given infinite straight line, from a given point which is not on it, to draw a

perpendicular straight line.

Proposition 13. If a straight line set up on a straight line make angles, it will make either two

right angles or angles equal to two right angles.

Proposition 14. If with any straight line, and at a point on it, two straight lines not lying on the

same side make the adjacent angles equal to two right angles, the two straight lines will be in a

straight line with one another.

Proposition 15. If two straight lines cut one another, they make the vertical angles equal to one

another.

Proposition 16. In any triangle, if one of the sides be produced, the exterior angle is greater than

either of the interior and opposite angles.
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Proposition 17. In any triangle two angles taken together in any manner are less than two right

angles.

Proposition 18. In any triangle the greater side subtends the greater angle.

Proposition 19. In any triangle the greater angle is subtended by the greater side.

Proposition 20. In any triangle two sides taken together in any manner are greater then the

remaining one.

Proposition 21. If on one of the sides of a triangle, from its extremities, there be constructed

two straight lines meeting within the triangle, the straight lines so constructed will be less than the

remaining two sides of the triangle, but will contain a greater angle.

Proposition 22. Out of three straight lines, which are equal to three given straight lines, to con-

struct a triangle: thus it is necessary that two of the straight lines taken together in any manner

should be greater than the remaining one.

Proposition 23. On a given straight line and at a point on it to construct a rectilineal angle equal

to a given rectilineal angle.

Proposition 24. If two triangles have the two sides equal to two sides respectively, but have the

one of the angles contained by the equal straight lines greater than the other, they will also have

the base greater than the base.

Proposition 25. If two triangles have the two sides equal to two sides respectively, but have the

base greater than the base, they will also have the one of the angles contained by the equal straight

lines greater than the other.

Proposition 26. If two triangles have two angles equal to two angles respectively, and one side

equal to one side, namely, either the side adjoining the equal angles, or that opposite one of the

equal angles, then the remaining sides equal the remaining sides and the remaining angle equals

the remaining angle.

Proposition 27. If a straight line falling on two straight lines makes the alternate angles equal to

one another, then the straight lines are parallel to one another.

Proposition 28. If a straight line falling on two straight lines makes the exterior angle equal to

the interior and opposite angle on the same side, or the sum of the interior angles on the same side

equal to two right angles, then the straight lines are parallel to one another.

Proposition 29. A straight line falling on parallel straight lines makes the alternate angles equal

to one another, the exterior angle equal to the interior and opposite angle, and the sum of the

interior angles on the same side equal to two right angles.

Proposition 30. Straight lines parallel to the same straight line are also parallel to one another.

Proposition 31. To draw a straight line through a given point parallel to a given straight line.

Proposition 32. In any triangle, if one of the sides is produced, then the exterior angle equals the

sum of the two interior and opposite angles, and the sum of the three interior angles of the triangle
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equals two right angles.

Proposition 33. Straight lines which join the ends of equal and parallel straight lines in the same

directions are themselves equal and parallel.

Proposition 34. In parallelogrammic areas the opposite sides and angles equal one another, and

the diameter bisects the areas.

Proposition 35. Parallelograms which are on the same base and in the same parallels equal one

another.

Proposition 36. Parallelograms which are on equal bases and in the same parallels equal one

another.

Proposition 37. Triangles which are on the same base and in the same parallels equal one another.

Proposition 38. Triangles which are on equal bases and in the same parallels equal one another.

Proposition 39. Equal triangles which are on the same base and on the same side are also in the

same parallels.

Proposition 40. Equal triangles which are on equal bases and on the same side are also in the

same parallels.

Proposition 41. If a parallelogram has the same base with a triangle and is in the same parallels,

then the parallelogram is double the triangle.

Proposition 42. To construct a parallelogram equal to a given triangle in a given rectilinear angle.

Proposition 43. In any parallelogram the complements of the parallelograms about the diameter

equal one another.

Proposition 44. To a given straight line in a given rectilinear angle, to apply a parallelogram

equal to a given triangle.

Proposition 45. To construct a parallelogram equal to a given rectilinear figure in a given recti-

linear angle.

Proposition 46. To describe a square on a given straight line.

Proposition 47. In right-angled triangles the square on the side opposite the right angle equals

the sum of the squares on the sides containing the right angle.

Proposition 48. If in a triangle the square on one of the sides equals the sum of the squares on

the remaining two sides of the triangle, then the angle contained by the remaining two sides of the

triangle is right.

Note. The Parallel Postulate is first used in the proof of Proposition 29.

Therefore the first 28 propositions do not depend on the Parallel Postulate

and may be valid is certain non-Euclidean geometries.
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Proposition 1. On a given finite straight line to construct an equilateral

triangle.

Proof. Let AB be the given finite straight line. Construct circle BCD

with center A and radius AB (Postulate 3). Construct circle ACE with

center B and radius AB (Postulate 3). [Here, point C can be defined as

a point of intersection of the two circles.] Create line segments AC and

BC (Postulate 1). Since A is the center of circle BCD, then AC is equal

to AB (Definition 15.) Since B is the center of circle ACE, then AB

is equal to BC. So AC is equal to BC (Common Notion 1). Therefore

the three straight lines CA, AB, and BC are equal to one another and

triangle ABC is an equilateral triangle. QED
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Proposition 2. To place at a given point (as an extremity) a straight

line equal to a given straight line.

Proof. Let A be the given point and BC the given straight line. Cre-

ate line segment AB (Postulate 1). Construct equilateral triangle ABD

(Proposition 1). Extend line segment DA to line [ray] AE and extend

line segment DB to line [ray] BF (Postulate 2). Construct circle CGH

with center B and radius BC (Postulate 3). [Here, point G is defined as

the intersection of the circle with ray BF .] Construct circle GKL with

center D and radius DG (Postulate 3). [Here, point L is the intersection

of the circle with ray DE.] Since B is the center of circle CGH , then BC

is equal to BG. Since D is the center of circle GKL, then DL is equal

to DG. Since DL is composed of DA and AL, and DG is composed of

DB and BG, and DA is equal to DB, then the remainder AL is equal to

the remainder BG (Common Notion 3). So AL, BC, and BG are equal

to each other (Common Notion 1). So AL is equal to BC and AL is the

desired line segment. QED
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Note. Proposition 4 is the familiar side-angle-side (S-A-S) theorem for

congruent triangles.

Proposition 4. If two triangles have the two sides equal to two sides re-

spectively, and have the angles contained by the equal straight lines equal,

they will also have the base equal to the base, the triangle will be equal

to the triangle, and the remaining angles will be equal to the remaining

angles respectively, namely those which the equal sides subtend. (That is,

if two triangles have two equal pairs of sides and the two angles between

these sides are equal, then the triangles are equivalent or congruent —

this is often called side-angle-side, S-A-S.)

Proof. Let the two triangles be ABC and DEF , where sides AB and

DE are equal, sides AC and DF are equal, and angles BAC and EDF

are equal. If triangle ABC is “applied to” (that is, translated to lie on top

of) triangle DEF with point A placed on point D, and line segment AB

on line segment DE, then point B will coincide with point E because

AB is equal to DE. Also, the straight line AC will coincide with line

DF because angle BAC is equal to angle EDF . Hence point C will

coincide with point F because line segment AC is equal to line segment

DF . Therefore base BC coincides with base EF (Common Notion 4).

Thus triangle ABC coincides with triangle DEF and corresponding parts

are equal. QED
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Note. The proof of Proposition 4 shows how Euclid interpretes triangles

as physical objects which can be moved around (without changing shape

— you might say they are “translation invariant”). This is quite different

from a “modern” proof.

Proposition 9. To bisect a given rectilinear angle.

Proof. Let the angle BAC be the given rectilineal angle. Take point D

on ray AB. Construct point E on segment AC by making line segment

AE equal to line segment AD (Proposition 3). Construct line segment

DE (Postulate 1). On DE construct equilateral triangle DEF (Propo-

sition 1). Construct ray AF (Postulate 1). Now to show angle BAF

equals angle FAC. Consider triangles ADF and AEF . We have AD

equal to AE by construction, DF equal to EF by construction, and AF

“common” to both triangles. So by Proposition 8 (S-S-S), triangles ADF

and AEF are congruent and angles DAF and FAC are equal and hence

ray AF bisects angle BAC. QED
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Note. Proposition 9, again, shows the classical idea of Euclidean con-

struction (sometimes called “straight-edge and compass construction” and

inspired by Postulates 1, 2, and 3). Three famous construction problems

are:

1. The Trisection Problem. Given an angle, cut it into three equal

parts.

2. The Duplication of the Cube. Given a cube of a certain volume,

construct the edge of a cube of twice that volume.

3. The Quadrature of the Circle. Given a circle of a certain area,

construct a square with the same area.

If we restrict ourselves to a finite number of operations with a straight-

edge and compass, then no three of the constructions can be accomplished.

Surprisingly, the proof that the famous problems cannot be solved lies in

the theory of algebraic equations and Galois theory.
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Proposition 16. In any triangle, if one of the sides be produced, the

exterior angle is greater than either of the interior and opposite angles.

Proof. Let ABC be a triangle and let side BC be extended to point

D (Postulate 2) to form exterior angle ACD. Let point E bisect line

segment AC (Proposition 10) and construct line segment BC, extending

it to point F such that BE equals EF (at this stage we are assuming

that we can double the length of a line segment and hence are assuming

that line segments can be made infinitely long). Create line segment FC

(Postulate 1). Consider triangles ABE and CFE. By construction, line

segments AE and EC are equal, and line segments BE and EF are

equal. Since angles AEB and FEC are vertical angles, they are equal

(Proposition 15). So triangles ABE and CFE are congruent (Proposition

4, S-A-S). So angle BAE equals angle ECF . Since angle ACD is greater

than angle ACF (Common Notion 5), then angle ACD is greater than

angle BAE. Similarly, line segment BC can be bisected to show that

angle ACD is greater than angle ABC. QED
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Note. We can now use Proposition 16 to show that parallel lines exist!

When we study non-Euclidean geometry, we will see that there is an ex-

ample where parallel lines do not exist. Therefore, in this non-Euclidean

example, Proposition 16 must not hold. The proof of Proposition 16 will

fail at the step where segment BE is doubled in length. In our particu-

lar non-Euclidean example (called “Elliptic Geometry”), we will not have

lines of infinite length and it will not be possible to double the length

of an arbitrary line segment. Much of the following information is from

An Introduction to Non-Euclidean Geometry by David Gans, Academic

Press, 1973.

Theorem. Under Euclid’s assumptions (both stated and unstated), ex-

cluding Postulate 5, parallel lines exist.

Proof. Let g be any line and A and B two distinct points on g. By

Proposition 11 we can construct lines perpendicular to g. We suppose

these lines meet at some point C forming triangle ABC. But then exterior

angle B and opposite interior angle A are both right angles and so are

equal. This contradicts Proposition 16 and so no such point C exists and

the constructed lines are parallel.
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Note. In our approach to non-Euclidean geometry, we will appeal to the

following result, which is equivalent to the parallel postulate.

Playfair’s Theorem. For a given line g and a point P not on g, there

exists a unique line through P parallel to g.

Note. If we negate Playfair’s “exists a unique,” then we have two al-

ternatives: (1) there exists more than one parallel to g through P , and

(2) there are no parallels to g through P . This will give us two types of

non-Euclidean geometry: (1) hyperbolic, and (2) elliptic, respectively.

Playfair’s Existence Theorem. For a given line g and a point P not

on g, there exists a line through P parallel to g.

Proof. Let line g and point P be given as described. Let Q be a point

on g and create line PQ (Postulate 1). Construct line h through point

P so that the angle h makes with PQ is the same as the alternate angle

g makes with PQ (Proposition 23). Then by Proposition 27, line h is

parallel to line g.
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Playfair’s Uniqueness Theorem. For a given line g and a point P

not on g, there exists a unique line through P parallel to g.

Proof. By Proposition 30, if there were two lines through P parallel to

g, then the two lines would be parallel to each other, a contradiction to

the fact that both lines pass through P .

Note. Playfair’s Existence Theorem does not depend on the Parallel

Postulate, and so it will hold in a non-Euclidean system in which Euclid’s

common notions and first four postulates hold. Since Euclid assumes that

lines are infinite in extent then, in a non-Euclidean geometry in which

lines are finite, Playfair’s Existence Theorem may not hold. This is why

Playfair’s Existence Theorem does not hold in elliptic geometry.

Note. Let’s explore two consequences of the Parallel Postulate.
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Theorem (Part of Proposition 32). The sum of the angles of a

triangle is equal to two right angles.

Proof. Consider triangle ABC and create line l parallel to segment

BC. Call the resulting angles l makes with segments BC and AC, d and

e, respectively. (Line l exists by Playfair’s Existence Theorem — not a

consequence of the Parallel Postulate). By Proposition 29 (which follows

from the Parallel Postulate), angle d is equal to angle b, and angle e is

equal to angle c (alternate angles). Since a+ d+ e equals two right angles

(Proposition 13), then a + b + c equals to right angles.

Note. The previous theorem depends on the Parallel Postulate and does

not hold in non-Euclidean geometries. In elliptic geometry, triangles have

angles summing to more than two right angles. In hyperbolic geometry,

triangles have angles summing to less than two right angles.
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Theorem. There exists similar triangles which are not congruent. That

is, there exists triangles of the same shape and different sizes.

Proof. Consider a triangle ABC. Let point D be the endpoint of AB

and point E the midpoint of AC (Proposition 10). Construct line segment

DE (Postulate 1). We can show DE is parallel to BC (using Cartesian

coordinates and slopes, say, which assume the Parallel Postulate). Then

by Proposition 29, angle ADE and angle ABC are equal; angle AED

and angle ACB are equal. Therefore the angles of triangle ABC are equal

to the corresponding angles of triangle ADE. The sides of triangle ABC

are twice as big as the corresponding sides of triangle ADE (an argument

must be made that BC is twice as big as DE.).

Note. The previous theorem does not hold in elliptic geometry nor in

hyperbolic geometry. Surprisingly, we will see that the size of a triangle

determines the sum of the angles — “little” triangles have angles summing

to near two right angles and “large” triangles have angles which sum to
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much more (in elliptic geometry) or much less (in hyperbolic geometry)

than two right angles.

Note. As we have seen, we could take Playfair’s Theorem instead of

Euclid’s Parallel Postulate and still generate the usual Euclidean geometry.

Some other assertions which are equivalent to the Parallel Postulate are:

1. Through a point not on a given line there passes not more than one

parallel to the line.

2. Two lines that are parallel to the same line are parallel to each other.

3. A line that meets one of two parallels also meets the other.

4. If two parallels are cut by a transversal, the alternate interior angles

are equal.

5. There exists a triangle whose angle-sum is two right angles.

6. Parallel lines are equidistant from one another.

7. There exist two parallel lines whose distance apart never exceeds some

finite value.

8. Similar triangles exist which are not congruent.

9. Through any three noncollinear points there passes a circle.

10. Through any point within any angle a line can be drawn which meets

both sides of the angle.
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11. There exists a quadrilateral whose angle-sum is four right angles.

12. Any two parallel lines have a common perpendicular.

By taking Euclid’s assumptions (stated and unstated), the first four pos-

tulates, and any one of the above, we are lead to the usual Euclidean

geometry.

Note. Over the centuries, a number of attempts were made to prove the

Parallel Postulate based on more elementary properties. It was thought

that the Parallel Postulate had to be fundamentally true and should not

have to be assumed but should be proven like the propositions. Those

of us studying math at some point during the last 150 years are quite

fortunate to know that Euclid’s Parallel Postulate is just one of three

possible options concerning parallels.

Note. An influential and significant attempt to prove the Parallel Pos-

tulate is due to Gerolano Saccheri. He published (in Latin) Euclid Freed

from Every Flaw in 1733 (a part is reprinted in A Source Book on Math-

ematics by D.E. Smith, 1959, Dover Publications). Saccheri assumed

something contrary to the Parallel Postulate and looked for a contradic-

tion. In the process, he derived several valid results in non-Euclidean

geometry.
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Note. Saccheri considered a quadrilateral ABCD in which AD and

BC are the same length and are both perpendicular to AB. He proved

correctly that these assumptions imply that angles ADC and BCD are

equal. These angles are called the summit angles. We will start our study

of non-Euclidean geometries by making assumptions about the summit

angles.

Note. Proposition 29 of Euclidean geometry implies that the summit

angles are right angles.

Note. First, Saccheri assumed the summit angles were larger than right

angles (called the hypothesis of the obtuse angle). He correctly proved

that this implies:

1. AB > CD.

2. The sum of the angles of a triangle is greater than two right angles.

3. An angle inscribed in a semicircle is always obtuse (i.e. greater than

a right angle).
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We might think of the quadrilateral as:

Saccheri did derive contradictions to some of Euclid’s propositions. Namely,

he found contradictions to Propositions 16, 17, and 18. However, as com-

mented above, these propositions use Euclid’s unstated assumptions that

lines are infinite in extent. Saccheri had made a tentative exploration of

elliptic geometry in which the above three properties hold, and lines are

not infinite.

Note. Next, Saccheri assumed the summit angles were less than a right

angle (called the hypothesis of the acute angle). He correctly derived:

1. AB < CD.

2. The angle-sum of every triangle is less than two right angles.

3. An angle inscribed in a semicircle is always acute.

4. If two lines are cut by a transversal so that the sum of the interior

angles on the same side of the transversal is less than two right angles,

the two lines do not necessarily meet, that is, they are sometimes

parallel.
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5. Through any point not on a given line there passes more than one

parallel to the line.

6. Two parallels need not have a common perpendicular.

7. Two parallels are not equidistant from one another. When they have

a common perpendicular, they recede from one another on each side

of this perpendicular. When they have no common perpendicular,

they recede from each other in one direction and are asymptotic in

the other direction.

8. Let c and d be two parallel lines which are asymptotic to the right, A

any point on d, and B the projection of A on c. Then α, the angle

between d and line AB, is acute, always increases as A moves to the

right, and approaches a right angle when A moves without bound in

that direction.

From (8), he concluded the lines c and d intersect at an infinitely distant

point and took this as a contradiction (remember, this is before Cauchy

and so before the idea of limit is formalized). Saccheri’s eight conclusions



Euclidean Geometry 27

above are valid in the version of non-Euclidean geometry called hyper-

bolic geometry. However, his “contradiction” was not a contradiction at

all. Saccheri thought that he had given a proof of Euclid’s Parallel Postu-

late. Instead, he had opened the door to non-Euclidean geometry and his

initial results would inspire others to extend his work into the new area of

mathematics called non-Euclidean geometry!


