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Adaptive Topographies

Note. Sewall Wright (1889-1988) introduced a graphical way to vi-

sualize the Fundamental Theorem of Natural Selection. He wanted

to plot w as a function of allele frequencies. This gives a surface

“above” the allele space called an adaptive topography. The Fun-

damental Theorem of Natural Selection says that populations will

be pulled uphill on these surfaces through the force of selection. In

the event of a one locus-two alleles model, the possible topographies

were given in a previous presentation and were graphs of functions

w = w(p) defined on the interval p ∈ [0, 1]. In the case of one locus-

three alleles, we can plot the surface above a DeFinetti diagram. For

more than 3 alleles at a locus, though, we require more than three

dimensions to graph the surface (and hence we cannot easily visualize

the result).
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An Example with 3 Alleles

Example. We take as an example, human β-globin data from West

Africa. There are 3 common β-globin alleles: βA, βC , and βS. Ho-

mozygous βSβS individuals have sickle cell anemia. Fitness values

were put on the 6 possible gentoypes by A. C. Allison [1] by calcu-

lating the ratio of observed to expected numbers (since not all ratios

are 1, the population is not in Hardy-Weinberg equilibrium):

geotype fitness

AA 0.991

SS 0.218

CC 1.446

AS 1.104

AC 0.982

SC 0.788

(here, for example, we write “AA” to represent genotype βAβA).

Some trajectories of populations on the adpative topography are:
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If a population starts with all A alleles (it is at the vertex of the

triangle labelled βA), and if the S allele is introduced (in small num-

bers), then the population will be drawn towards the polymorphic

equilibirum where

ps =
wSS − wAS

wAA − 2wAS + wSS
and pA = 1 − pS.

For the fitness values above, this gives pS = 0.1209, pA = 0.8791,

and w = 0.9033. As can be seen in the figure, this point is “locally

stable” and represents a local MAX of the surface.

Now suppose the C allele is introduced (in small quantity). Even

though the population would have higher mean fitness if C could go

to fixation, the dynamics of the situation will not allow it ( the point

pS = 0.1209, pA = 0.8791 is a stable equilibrium). However, if the

C allele can be introduced at a sufficiently high frequency, then the
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population will be drawn to fixation in C (the point labelled βC in the

diagram). This shows that the “fate” of a population is dependent

on its initial position in allele space. In fact, we could divide up the

allele space into a “basin of attraction” for the βAβS polymorphic

equilibrium and a basin of attraction for the point βC of fixation.

This shows that isolated populations might reach different average

fitnesses for a given trait. Some populations (fortunate enough to

find themselves in the right basin of attraction) will be attracted to

the highest (globally MAX) possible fitness value (wCC), whereas

other populations might be “stuck” at the lower βAβS equilibrium.

A topographic map of the adaptive topography is:
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The Shifting Balance Theory

A type of selection called interdeme selection occurs between semi-

isolated populations (demes) of the same species. If populations

containing certain genotypes are more likely to become extinct and

have their vacated habitats recolonized by migrants from other popu-

lations that are more persistent due to the particular genotypes that

they contain, then the more successful populations can in some sense

be considered as having a greater “fitness” than the less successful

ones. Since this concept of population fitness is a characteristic of

the entire population and not merely the average fitness of the geno-

types within it (w), interdeme selection is outside the realm of most

conventional models of selection. Interdeme selection is one type of

group selection [6].

Interdeme selection plays an essential role in the shifting balance

theory of evolution (due also to Sewall Wright). In Wright’s view,

subdivision of a population into small, semi-isolated demes gives the

best chance for the populations to explore the full range of their

adaptive topography. Temporary reductions in fitness that would be

prevented by selection in large populations become possible in small

ones because of the random drift in allele frequencies that occurs

in small populations. The lucky subpopulations that reach higher

adaptive peaks on the fitness surface increase in size and send out

more migrants than other subpopulations, and the favorable gene
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combinations are gradually spread throughout the entire set of sub-

populations by means of interdeme selection. The shifting balance

process includes three distinct phases:

1. An exploratory phase, in which random genetic drift plays an

important role in allowing small populations to explore their

adaptive topography.

2. A phase of mass selection, in which favorable gene combinations

createdby chance in phase 1 rapidly become incorporated into the

genome of local populations by the action of natural selection.

3. A phase of interdeme selection, in which the more successful

demes increase in size and rate of migration, and the excess mi-

gration shifts the allele frequencies of nearby populations until

they also come under the control of the higher fitness peak. The

favorable genotypes thereby become spread throughout the en-

tire population in ever-widening concentric circles. Where the

region of spread from two such centers overlaps, a new and still

more favorable genotype may occur and itself become a center

for interdeme selection. In this manner, the whole of the adap-

tive topography can be explored, and there is a continual shifting

of control from one adaptive peak to a superior one.

The shifting balance theory has played an important role in evo-

lutionary thinking, in part because of the prominent role assigned

to random genetic drift in the initial phase of the process. How-
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ever, as a comprehensive theory of evolution, many aspects of the

theory remain to be tested. For the theory to work as envisaged,

the interactions between alleles must often result in complex adap-

tive topographies within many peaks and valleys. The population

must be split up into smaller demes, which must be small enough

for random genetic drift to be improtant but large enough for mass

selection to fix favorable combinations of alleles. While migration

between demes is necessary, neighboring demes must be sufficiently

isolated for genetic differentiation to occur, but sufficiently connected

for favorable gene combinations to spread. Because of uncertainty

about the applicability of these assumptions, the shifting balance

process remains a picturesque metaphor that is still largley untested.
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Two or More Loci, Linkage, and

Some Problems for the Fundemantal Theorem

Note. If we consider two loci, each with two possible alleles (say A, a

at one locus and B, b at the other), then we can express the possible

“states” of a population by plotting a point (pA, pB) ∈ [0, 1]× [0, 1].

This then allows us to visualize the graph of w as a surface over this

unit square. We have 9 possible genotypes, and hence:

genotype fitness

AABB w1

AABb w2

AAbb w3

AaBB w4

AaBb w5

Aabb w6

aaBB w7

aaBb w8

aabb w9

Now if we assume that the A/a and B/b alleles are inherited independently,

then we have:
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genotype frequency fitness

AABB p2
Ap2

B w1

AABb 2p2
ApBqb w2

AAbb p2
Aq2

b w3

AaBB 2pAqap
2
B w4

AaBb 4pAqapBqb w5

Aabb 2pAqaq
2
b w6

aaBB q2
ap

2
B w7

aaBb 2q2
apBqb w8

aabb q2
aq

2
b w9

where pA is the frequency of allele A, qa = 1 − pA, and pB is the

frequency of allele B, qb = 1 − pB. Under these assumptions, we

may calculate average fitness as:

w = (p2
Ap2

B)w1 + (2p2
ApBqb)w2 + (p2

Aq2
b )w3 + (2pAqap

2
B)w4+

(4pAqapBqb)w5 +(2pAqaq
2
b )w6 +(q2

ap
2
B)w7 +(2q2

apBqb)w8 +(q2
aq

2
b )w9.

We can substitute qa = 1− pA and qb = 1− pB to get w in terms of

pA and pB only.
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Example. It is common for heterozygotes to be more fit than

homozygotes. As such, consider the following fitness values:

genotype fitness

AABB 1

AABb 4

AAbb 1

AaBB 4

AaBb 5

Aabb 4

aaBB 1

aaBb 4

aabb 1

The associated adaptive topography has a single interior maximum.
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Here are some level curves:

Note. We are interested in maintaining polymorphism through se-

lection. (This was a rather large debate in the history of population

genetics. When molecular techniques were first introduced in the

1960’s, a great deal of diversity was found to be present in most

every population. The question became: “Is this diversity due to

selection, or due to the accumulation of neutral mutations?” This is

the heart of the “selection/neutrality” debate.) Therefore, we would

like to try to find adaptive topographies that are very . . . “lumpy.”
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That is, we want a surface with many local MAXs.

Example. Consider the following fitness values:

genotype fitness

AABB 3

AABb 4

AAbb 1

AaBB 4

AaBb 3

Aabb 4

aaBB 1

aaBb 4

aabb 3

The associated adaptive topography has two interior maxima (at

approximately (pA, pB) = (0.21, 0.21) and (pA, pB) = (0.79, 0.79))

and a saddle point (at (pA, pB) = 0.5, 0.5)). Here are some level

13



curves:

Note. However, this assumption that A/a and B/b are inherited

independently may be questionable and, in particular, is biologically

unrealistic. Hence, we need to discuss linkage disequilibrium. To

do so, we need to study the genes making up gametes (sex cells).

Note. Let’s consider two pairs of genes (autosomal — not located

on a sex chromosome), say A/a and B/b. As above, let pA, qa, pB,

and qb denote the frequencies of A, a, B, and b, respectively. In

such a population, a random individual will form gametes (which
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are monoploid — throughout we are discussing diploid organisms) as

follows (assuming A/a and B/b are inherited independently):

gamete frequency

AB pApB

Ab pAqb

aB qapB

ab qaqb

If these are in fact the frequencies of gametes, then we have “ran-

dom association in the gametes” and the population is in linkage

equilibrium for these genes.

Note. A population that is not in linkage equilibrium is said to

be in linkage disequilibrium. We can denote gametic frequencies in

general as:

gamete frequency

AB P11

Ab P12

aB P21

ab P22
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If the population is in linkage equilibrium, then

P11 = pApB

P12 = pAqb

P21 = qapB

P22 = qaqb

If the population is not in linkage equilibrium, then one or more of

these equations will be violated. Notice, also, that P11 +P12 +P21 +

P22 = 1.

Note. Similar to a DeFinetti diagram, we select a point in the

interior of a tetrahedron and the sum of the four perpendicular dis-

tances to the faces of the tetrahedron is a constant. Therefore, we

could represent the “gametic state” (P11, P12, P21, P22) of a popu-

lation by plotting a point in a tetrahedron. We have seen that a

population in Hardy-Weinberg equilibrium has points in a DeFinetti

diagram which lie on a parabola. Similarly, the points in a tetrahe-

dron (P11, P12, P21, P22) which correspond to a population in linkage
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equilibrium determines a surface (called the Wright manifold):

Points off of this manifold represent a situation of linkage disequilib-

rium.

Note. Unfortunately, linkage disequilibrium can have severe conse-

quences for the dynamics of a population. In fact, due to the linkage

disequilibrium, a population may be drawn to an equilibrium which

does not yield a maximum of fitness (in apparent violation of the

Fundamental Theorem of Natural Selection). A. Hastings [2,3] pro-

duced a set of parameters (for fitness and linkage disequilibrium)

which produced an adaptive topography with four stable polymor-
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phic equilibria. However, the equilibria do not correspond to extrema

of fitness. The surface is:

Note. The above topography with equilibria which do not corre-

spond to extrema of fitness, shows us that we must be careful in

applying the Fundamental Theorem of Natural Selection. Contro-

versy over this theorem dates back many years (Wright and Fisher

were frequently in conflict, in particular over Fisher’s objections to
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Wright’s assumption of random mating in his shifting balance the-

ory). W. J. Ewens has studied the Fundamental Theorem is some

details [4,5]. The abstract of one of his works [4] reads:

Fisher’s “Fundamental Theorem of Natural Selec-

tion” has long caused controvery in population genet-

ics theory. Viewed as a statement about the increase,

or rate of increase, of mean fitness over time, it en-

countes difficulties with cases arising in a multi-locus

system for which mean fitness can decrease. An inter-

pretation of the theorem is put forward here which

implies that it is correct as a mathematical state-

ment, but of less biological value than was claimed

by Fisher.
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