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Introduction and Motivation

The purpose of this talk is to present a realistic problem from biology

which requires very little background. We take our example from

population genetics and will need nothing more than the first and

second derivative tests for a complete analysis. Calculus will lead to

a biological property and, in turn, interpretation of this biological

situation will lead to the mathematical topic of stability.

2



Vocabulary and Background

A locus is a position in genetic material where a gene resides. An

allele is a particular form of a gene. We consider the case of diploid

organisms in which each locus contains two (not necessarily distinct)

alleles. Most of the organisms with which we are familiar are diploid,

including humans. We inherit one allele from each parent. Bacteria

are monoploid, having only one allele at each locus, and several

groups of plants are polyploid, having three or more alleles at each

locus.

We will concentrate on a single locus and assume this locus can

contain the alleles A and/or a, but no others. This is called the “one

locus–two alleles model.” This leads to three distinct genotypes:

AA, Aa, and aa. Genotype Aa is said to be heterozygous and

genotypes AA and aa are homozygous. We represent the frequency

of the A allele as p (that is, p × 100)% of the alleles at the given

locus in the population are the A allele). Therefore, the frequency

of the a allele is 1 − p. We assume random mating (or the so called

Hardy-Weinberg equilibrium) and therefore the frequencies of the

three possible genotypes are

genotype frequency fitness

AA p2 w1

Aa 2p(1 − p) w2

aa (1 − p)2 w3
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In the case that A determines a dominant trait and a a recessive

trait, the genotypes AA and Aa are indistinguishable to the “naked

eye” (they are said to yield the same phenotype) — they both de-

termine the dominant trait. We do not make such a restrictive as-

sumption. We assume that all three genotypes are distinguishable.
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Expected Value

Definition. If an experiment has n different numerical outcomes,

x1, x2, . . . , xn, each with probability p1, p2, . . . , pn, respectively, then

the expected value of the experiment is

n∑

i=1

pixi = p1x1 + p2x2 + · · · + pnxn.

Example. If a 6-sided die is rolled, then we have the following

outcomes and probabilities:

xi yi

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

The expected value of this experiment is

(1)(1/6)+(2)(1/6)+(3)(1/6)+(4)(1/6)+(5)(1/6)+(6)(1/6) = 3.5.
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Note. With each genotype, we associate a fitness, as above. Fit-

ness represents, in a sense, a genotype’s reproductive contribution to

future generations. In a population in which the frequency of allele

A is p, define the average fitness of this population as

w = p2w1 + 2p(1 − p)w2 + (1 − p)2w3

= (w1 − 2w2 + w3)p
2 + (2w2 − 2w3)p + w3

where w1, w2, and w3 are as given above. Notice that w is a second

degree polynomial in p. Natural selection will act in such a way as to

force w to increase with time (“survival of the fittest”). Therefore,

we can determine what frequency that allele A will approach as time

increases, since it will simply be the value of p that maximizes w.

The result, of course, will depend on w1, w2 and w3.
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Computations

Note. We want to maximize w for p ∈ [0, 1]. Differentiating w with

respect to p yields

dw

dp
= 2(w1 − 2w2 + w3)p + (2w2 − 2w3).

If w1 − 2w2 + w3 = 0, then
dw

dp
is constant and either

1. w has a maximum at p = 1 if w1 > w2 and w1 > w3, or

2. w has a maximum at p = 0 if w3 > w1 and w3 > w2, or

3. w is constant if w1 = w2 = w3.

If w1 − 2w2 + w3 �= 0, then w has a critical point at

p =
w3 − w2

w1 − 2w2 + w3
≡ c.

If c �∈ (0, 1), then the maximum of w on p ∈ [0, 1] will occur at either

p = 0 or p = 1, that is when w = w1 or w = w3, whichever is larger.

If c ∈ (0, 1) then the maximum of w on p ∈ [0, 1] will occur at either

p = 0, p = c, or p = 1, whichever yields the largest w. Also, with

c ∈ (0, 1), w will have a minimum at one of these three points. In

fact, under these conditions, w must have an extremum at p = c.

Therefore, the concavity of the graph of w is of particular interest.

The second derivative of w with respect to p is

d2w

dp2
= 2(w1 − 2w2 + w3).

So if 2w2 < w1 + w3, then the graph of w will be concave up and w

will have a minimum at p = c (see Figure 1). If 2w2 > w1 +w3 then
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the graph of w will be concave down and w will have a maximum

at p = c (see Figure 2). It is this second case which interests the

biologist.
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Discussion

Note. A single locus in a population may be monomorphic, in

which case every member of the population has the same type of

allele present at that locus, or a locus may be polymorphic in which

case there is more than one type of allele present in the population at

that locus. When molecular methods were introduced into genetics,

it was discovered that there is a great deal of polymorphism in most

natural populations. It is this diversity that gives the method of

“DNA fingerprinting” its power to distinguish between the genetic

material of individuals (and in the absence of a reliable database

of allele frequencies for different ethnic populations that has led to

controversy over the forensic applications of this method). So, we

ask the question “What are the possible values of w1, w2, and w3

such that natural selection will maintain polymorphism?”

To maintain polymorphism, c ∈ (0, 1) is necessary and the graph

of w must be concave down, that is 2w2 > w1+w3. Simple algebraic

manipulations show that these two conditions imply that w2 > w1

and w2 > w3. If we consider what this means biologically, then

it is exactly what is expected! This is the so-called heterozygote

advantage model in which the heterozygote is more fit than either

homozygote. In the case that either homozygote is more fit than

the heterozygote, genetic diversity is lost and fixation for one of the

alleles occurs. Therefore, the only way to preserve polymorphism at a
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single locus with natural selection is through heterozygote advantage.

This is an important biological fact which we have discovered from

the underlying mathematics!
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Stability and Equilibria

Note. We have assumed an absence of outside forces in our model.

For example, we have ignored random genetic drift (i.e. changes in

allele frequencies which result from chance alone; these changes are

due to “sampling error” in populations of finite size and is less im-

portant in large populations), migration and mutation. All three of

these factors can act to perturb allele frequencies from an equilib-

rium. Additionally, immigration and mutation can introduce new or

extinct alleles into a population. Continuing to restrict our model to

two alleles, we can view all of these outside forces as perturbations

in allele frequencies. This biological interpretation now leads to the

mathematical idea of stability. In the case of heterozygote advantage,

natural selection will push a population to a polymorphic equilibrium

(see Figure 2). If the allele frequencies are slightly perturbed, then se-

lection will force the population back to the equilibrium (we can view

selection as a force pulling upward on points which are restricted to

the w curve). Therefore, in this case, the equilibrium at p = c is said

to be stable. In fact, it is said to be universally or globally stable,

since any initial value of p ∈ (0, 1) will, with time, be “attracted” to

this equilibrium. For this reason, this equilibrium is called an attrac-

tor or a sink. On the other hand, in Figure 2 there are also equilibria

at both p = 0 and p = 1 (at which polymorphism is lost and fixation

of the a allele or the A allele occurs, respectively). However, these
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represent unstable equilibria since a slight perturbation (represented

by the introduction of the missing allele through mutation or immi-

gration) will have the effect of sending the population (through the

force of selection) away from the original equilibrium and towards the

polymorphic equilibrium. The idea of stability is very important in

mathematics, particularly in differential equations (linear and non-

linear) and dynamical systems. The labeling of equilibrium points

as stable, unstable, or semistable gives a fundamental classification

of these points and yields important physical information about the

underlying dynamical problem. Our application gives insight into

this mathematical concept through an intuitive understanding of the

underlying biology!
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An Example

Note. One of the best such examples for our model is the allele

which in the homozygous condition codes for thalassemia, a type of

lethal hereditary anemia related to sickle cell anemia. We represent

this allele by a and let the alternative allele be represented by A.

In the heterozygous state, an individual has a resistance to malaria.

In some areas in which malaria is prevelant, the frequency of the

thalassemia allele may be as high as 10 percent (see [1]). We now use

this data and our model to analyze the fitness values associated with

the three different genotypes (namely, the AA or normal genotype,

Aa or the malaria resistant genotype, and the aa or thalassemia

genotype). First, individuals which have genotype aa have lethal

thalessemia, and so w3 = 0. The choice of w2 is arbitrary, so take

w2 = 1.0. The frequency of the a allele is observed to be 0.10, so

there is an equilibrium at c = p = 0.90. Setting

c =
w3 − w2

w1 − 2w2 + w3
= 0.90,

gives that w1 = 0.89. Notice that for this population, w = 0.90

and the average fitness in this population is higher than that in a

population without the thalassemia allele. It is this small advantage

that keeps the allele present (at the expense, one might observe, of

automatically losing one percent of the population to the anemia).

This illustrates the strength with which natural selection can act to
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encourage the presence of traits which may give a slight advantage to

individual members of a population (this is, of course, a fundamental

property of Darwinian evolution).
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Figure 1. A graph of average fitness w for a population in which

p represents the frequency of allele A. The graph of w is concave

up and natural selection will eliminate polymorphism. In this graph,

w1 = 1.6, w2 = 0.6 and w3 = 1.4.
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Figure 2. A graph of average fitness w for a population in which

selection will maintain polymorphism. Again, p is the frequency of

allele A. The critical point at p = c gives a stable equilibrium for

the model and the points p = 0 and p = 1 are unstable equilibria.

In this graph, w1 = 1.0, w2 = 1.6 and w3 = 0.6.
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