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Genotypes

Note. “Higher” organisms (“eukaryotes”) have cells with organelles

which have a nucleus that contains the genetic material (DNA). The

DNA is in chromosomes. A cell with a single copy of each chro-

mosome is haploid and a cell with two copies of each chromosome

is diploid. We will concentrate on on diploid organisms and con-

sider different versions (“genotypes”) of the “homologous” pairs of

chromosomes.

Note. A location on a chromosome is called a locus. At each locus is

an allele (or gene). We denote the alleles as A1, A2, . . . , An. If, at a

given locus, one chromosome has allele Ai and the other chromosome

has allele Aj where i �= j, then the organism is a heterozygote at that

locus. If i = j then the organism is a homozygote at that locus. The

genotype of the organism is the pair of alleles AiAj present at the

locus. The way these alleles are expressed determine the phenotype

of the organism.

Note. In some cases, one allele is dominant and another is recessive.

If A is the dominant allele and a is the recessive allele, then there

are three genotypes and two phenotypes:

genotype phenotype

AA A–

Aa A–

aa aa
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The Hardy-Weinberg Law

Note. We denote the frequency of allele Ai as xi where i =

1, 2, . . . , n. For the gene pair (Ai, Aj), where allele Ai is inherited

from the father and Aj is inherited from the mother, we denote the

frequency as xij.

Theorem. The Hardy-Weinberg Law

If alleles are randomly mixed from one generation to the next, then:

(a) the gene frequencies remain unchanged from generation to gen-

eration, and

(b) from the first daughter generation onward, the frequency of

genotype (Ai, Ai) is x2
i and the frequency of genotypes (Ai, Aj) and

(Aj, Ai) together is 2xixj where i �= j.

Proof. If we choose an allele at random from all the genotypes

{(Ai, Aj) | 1 ≤ i ≤ n, 1 ≤ j ≤ n}, then we get allele Ai with

probability

xi =
1

2
× (the frequency of genotype (Ai, Aj))

+
1

2
× (the frequency of genotype (Aj, Ai))

=
1

2

n∑
j=1

xij +
1

2

n∑
j=1

xji.

Now let x′
i and x′

ij denote the frequencies in the next generation.
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With random mating,

x′
ij = xixj and x′

ji = xjxi.

Therefore

x′
i =

1

2

n∑
j=1

x′
ij +

1

2

n∑
j=1

x′
ji

=
1

2


 n∑

j=1

xixj


 +

1

2


 n∑

j=1

xjxi




=

n∑
j=1

xixj = xi


 n∑

j=1

xj


 = xi.

Next, the frequency of (Ai, Aj) in the next generation is x′
ij = xixj =

x′
ix

′
j and claim (b) holds.

Note. We get the Hardy-Weinberg Law by assuming random mat-

ing (or the random union of gametes). In biology, the assumptions

are:

1. There is no mutation at the given locus.

2. There is no migration (emigration or immigration).

3. The population is large (infinite, in fact).

4. There is no selection pressure at the locus.

5. The locus has autosomal alleles (i.e. the locus is not sex linked).

6. Reproduction is at random with respect to the locus.
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7. Generations are non-overlapping.

Note. If we only consider two alleles A and a with frequencies p

and q, respectively, then we have p + q = 1 and:

genotype frequency

AA p2

Aa 2pq = 2p(1 − p)

aa q2 = (1 − p)2

We can therefore represent the state of such a population as a point

p ∈ [0, 1].

Note. In a sense, the Hardy-Weinberg Law describes a sampling

problem. Imagine an urn containing an infinite number of marbles,

some of them red (p × 100%) and some of them blue (q × 100%).

Create a “new population” by taking an infinite sample. As we will

see, if the population is finite, then the sampling process may violate

the Hardy-Weinberg Law and the population may undergo genetic

drift.

Note. We can represent the “state” of a population which has three

possible alleles at a given locus using a DeFinetti Diagram. In

such a diagram, a point is plotted in an equilateral triangle and the

perpendicular distance from the point to each edge of the triangle

represents an allele frequency:
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We can also use a DeFinetti diagram to represent the genotypic

frequencies AA, Aa, and aa.
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The Selection Model

Note. We now associate a selective value (or fitness) with each

genotype AiAj of wij. We take wij ≥ 0 for all i, j. Since the gene

pairs (Ai, Aj) and (Aj, Ai) are genotypically identical, then we have

wij = wji.

Note. If N individuals are conceived in a new generation, then

the number of individuals with gene pair (Ai, Aj) is xixjN and the

number that survive to maturity is wijxixjN (so here we take wij ∈
[0, 1]). The total number of individuals reaching maturity in the next

generation is then
n∑

r,s=1

wrsxrxsN.

Then the frequency of gene pairs (Ai, Aj) in the next generation is

x′
ij =

wijxixjN∑n
r,s=1 wrsxrxsN

.

Note. Since x′
i =

1

2

n∑
j=1

x′
ij +

1

2

n∑
j=1

x′
ji then

x′
i =

1

2

n∑
j=1

(
wijxixjN∑n

r,s=1 wrsxrxsN

)
× 2

(the factor of 2 comes from the fact that wij = wji), or

x′
i = xi

( ∑n
j=1 wijxj∑n

r,s=1 wrsxrxs

)
.
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This equation describes the evolution of the gene frequencies under

selection.

Theorem. The Fundamental Theorem of Natural Selec-

tion

The rate of increase in fitness of any organism at any time is equal

to its genetic variance in fitness at that time. Symbolically:∑
α dp = dt

∑∑ ′(2paα) = W dt

where

• a is the rate of increase of bearers of a particular gene above the average,

• α is the average effect upon an individual of introducing the gene

in question,

• p is the gene frequency,

• t is time,

• W dt is the change in fitness, and

• ∑′(2paα) is the contribution of each factor to the genetic variance

in fitness.

This was stated by Ronald A. Fisher in his 1930 The Genetical

Theory of Natural Selection.
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The Increase in Average Fitness

Definition. We create the fitness matrix W = [wij]. The average

fitness is then

w =

n∑
r,s=1

wrsxrxs = �x · (W�x).

Note. In order to prove our “big result,” we need the following:

Theorem. Jensen’s Inequality. If f is a strictly convex (i.e.

concave up) function defined on some interval I , then

f
(∑

pixi

)
≤
∑

pif(xi)

for all x1, x2, . . . , xn ∈ I and constants p1, p2, . . . , pn, with equality

if and only if all xi coincide.

Note. The text describes the following as a “consequence of the

Fundamental Theorem of Natural Selection.” However, the following

is often taken as the Fundamental Theorem.

Theorem. For the dynamical system �x → �x′ given by

x′
i = xi

∑
j wijxj∑

r,s wrsxrxs
= xi

(W�x)i
�x · (W�x)

,

the average fitness w(�x) = �x · (W�x) increases along every orbit in

the sense that w(�x′) ≥ w(�x) with equality if and only if �x is a fixed

point.
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Proof. We assume w(�x) = �x · W�x > 0, and will show that

(w(�x))2(w(�x′)) = (�x · W�x)2(�x′ · W�x′) ≥ (�x · W�x)3 = (w(�x))3.

First,

(�x · W�x)2(�x′ · W�x′) = (�x · W�x)2

(
n∑

i=1

x′
i(W�x)i

)

= (�x · W�x)2
n∑

i=1

(
xi

(W�x)i
�x · W�x

) n∑
j=1

wijx
′
j




= (�x · W�x)2
n∑

i=1

(
xi

(W�x)i
�x · W�x

) n∑
j=1

wijxj
(W�x)j
�x · W�x




=

n∑
i=1

(
xi

[
n∑

k=1

wikxk

])
n∑

j=1

wijxj(W�x)j

=
n∑

i,j,k

xiwikxkwijxj(W�x)j ≡ s(2). (∗)

Now if we swap i and j in (∗) we get

n∑
i,j,k

xiwijxjwikxk(W�x)k ≡ s(1).

Now

s(1) = s(2) =
s(1) + s(2)

2
≥
√

s(1)s(2)
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and so

s(1) = s(2) =
1

2

∑
i,j,k

xiwijxjwikxk[(W�x)j + (W�x)k]

≥
n∑

i,j,k

xiwijxjwikxk(W�x)
1/2
j (W�x)

1/2
k

=

n∑
i=1

xi

n∑
j=1

wijxj(W�x)
1/2
j

∑
k

wikxk(W�x)
1/2
k

=

n∑
i=1

xi


 n∑

j=1

wijxj(W�x)
1/2
j




2

.

Now Jensen’s Inequality applied to f(x) = x2 implies(∑
xiyi

)2

≤
∑

xiy
2
i
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and so the last expression is

≥

 n∑

i=1

xi

n∑
j=1

wijxj(W�x)
1/2
j




2

=


 n∑

j=1

xj(W�x)
1/2
j

n∑
i=1

xiwij




2

=


 n∑

j=1

xj(W�x)
1/2
j

∑
xiwji




2

since wij = wji

=


 n∑

j=1

xj(W�x)
1/2
j (W�x)j




2

=


 n∑

j=1

xj(W�x)
3/2
j




2

≥




 n∑

j=1

xj(W�x)j




3/2



2

by Jensen’s Inequality applied to f(x) = x3/2

=


 n∑

j=1

xj(W�x)j




3

. (∗∗)
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Now by (∗)

(�x · W�x)2(x′ · W�x′) = s(1) = s(2)

≥

 n∑

j=1

xj(W�x)j




3

by (∗∗)

= (�x · W�x)3.

Hofbauer and Sigmund (p. 239) state: if w(�x) = w(�x′), there must

exist a value c such that (W�x)j = c for all j with xj > 0. This

means that �x is a rest point.

Corollary. Let T : �x → �x′ be defined as

x′
i = xi

(W�x)i
�x · W�x

.

Then every orbit Tk�x converges to a rest point as k → ∞. In

fact, the convergence is monotone in the sense that w(�x′) ≥ w(�x).

Alternatively, every accumulation point of an orbit is a rest point of

T .
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The Case of Two Alleles

Note. In this section, we consider a single locus with two alleles, A

and a, present. This is similar to a previous analysis, but this time

we use the Fundamental Theorem of Natural Selection and consider

a discrete dynamical system. We denote the frequency of A as p and

the frequency of a as q = 1− p. We associate the fitness values with

genotypes:

genotype fitness

AA w11

Aa w12 = w21

aa w22

From above (“The Selection Model” section), we see that

p′ = p
pw11 + qw12

p2w11 + pqw12 + pqw21 + q2w22

=
p(pw11 + w12(1 − p))

p(w11p + w12(1 − p)) + (1 − p)(w21p + w22(1 − p))
(∗)

≡ a1

a1 + a2
where a1 = p(w11p + w12(1 − p)) and

a2 = (1 − p)(w12p + w22(1 − p)).

The average fitness is

w(p) = p2w11 + 2p(1 − p)w12 + (1 − p)2w22

= p2w11 + 2pw12 − 2p2w12 + w22 − 2pw22 + p2w22

= p2[(w11 − w12) + (w22 − w12)] − 2p(w22 − w12) + w22

= a1 + a2.
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Now from the recurrence relation (∗) we get the difference equation:

p′ − p =
p(pw11 + w12(1 − p))

w(p)
− p

=
p2w11 + p(1 − p)w12 − pw(p)

w(p)

=
p2w11 + p(1 − p)w12 − p(p2[w11 − 2w12 + w22] − 2p(w22 − w12) + w22)

w(p)

=
p2w11 + p(1 − p)w12 − p3(w11 − 2w12 + w22) + 2p2(w22 − w12) − pw22

w(p)
. (∗∗)

Now
d

dp
[w(p)] = 2p[w11 − 2w12 + w22] − 2(w22 − w12)

and

p(1 − p)
d

dp
[w(p)] = p(1 − p)(2p[w11 − 2w12 + w22] − 2(w22 − w12)]

= 2{p2(w11 − 2w12 + w22) − p(w22 − w12)

−p3(w11 − 2w12 + w22) + p2(w22 − w12)}
= 2{p2w11 + p(1 − p)w12 − p3(w11 − 2w12 + w22)

−p2w12 + p2w22 − pw22 + p2w22 − p2w12}
= 2{p2w11 + p(1 − p)w12 − p3(w11 − 2w12 + w22)

+2p2(w22 − w12) − pw22}.
From (∗∗)

p′ − p =
p(1 − p)

2w(p)

d

dp
[w(p)].

Therefore, we have a fixed point in the recurrence relation when

either p = 0, p = 1, or
d

dp
[w(p)] = 0.
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Note. We consider cases:

(1) If w12 =
1

2
(w11 + w22) then

w(p) = −2p(w22 − w12) + w22

and
d

dp
[w(p)] �= 0 (unless w22 = w12 and hence w11 = w22 = w12 —

in this event, w(p) is a constant and all points are rest points.

Now

d

dp
[w(p)] = −2(w22 − w12) = −2

(
w22 − 1

2
(w11 + w22)

)

= −2

(
−1

2
w11 +

1

2
w22

)
= w11 − w22

and so p′ − p > 0 if w11 > w22 and p → 1 in this case (where w11 is

the largest fitness value — and the fitness of AA).

If w11 < w22 then p → 0 (where w22 is the largest fitness value —

and the fitness of aa). So in the first case, the most fit homozygotic

form goes to fixation.

(2) If w12 �= 1

2
(w11 +w22) then w(p) is a parabola with critical point

p =
w22 − w12

(w11 − w12) + (w22 − w12)
.

In this case we have:

(a) if w12 is between w11 and w22 then w has a MAX at either

p = 0 (if w22 > w12 > w11) or at p = 1 (if w11 > w12 > w22).

(b) if w12 > w11 and w12 > w22 then this is the heterozygote

advantage and w(p) has a critical point in (0, 1) where w has a local

MAX.
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(c) if w12 < w11 and w12 < w22 then w(p) has a critical point

in (0, 1) where w has a critical point in (0, 1) where w has a local

MIN.

Note. Graphically, we have:

w22 > w12 > w11 w11 > w12 > w22
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Note. Biologically, in this case (one locus, two alleles), polymor-

phism is maintained in the population only under the heterozygote

advantage model.

Note. In the event of one locus and three alleles, we can use a

DeFinetti diagram to represent the state of the population and we

can watch the population evolve with time as the point moves around.

We can also plot the mean fitness w as a surface above the DeFinetti

diagram, called an “adaptive topography.”
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