AMERICAN MATH Mathemat	SciN	leť		
Previous	Up	Next		

From References: 9 From Reviews: 2

MR1271208 (95f:05087) 05C70 05B30 05B40 Bryant, Darryn E. (5-QLD-CB); El-Zanati, Saad I. (1-ILS); Gardner, Robert B. [Gardner, Robert Bentley] (1-ETNS) Decompositions of $K_{m,n}$ and K_n into cubes. (English summary) Australas. J. Combin. 9 (1994), 285–290.

A set $\{G_1, \dots, G_t\}$ of graphs is said to be a *G*-decomposition of *H* if G_i is isomorphic to *G* for $1 \le i \le t$ and $\{E(G_1), \dots, E(G_t)\}$ is a partition of E(H). *G*-decompositions of K_n and of $K_{x,y}$ have been extensively studied [see, e.g., F. Harary and R. W. Robinson, J. Graph Theory **9** (1985), no. 1, 67–86; MR0785650; C. C. Lindner and C. A. Rodger, in *Contemporary design theory*, 325–369, Wiley, New York, 1992; see MR1178497].

The *d*-cube Q_d is the simple graph with vertex set being the set of all binary *d*-tuples, and with edge set consisting of all pairs of vertices which differ in exactly one coordinate. Q_d -decompositions of K_n were studied by A. Kotzig [J. Combin. Theory Ser. B **31** (1981), no. 3, 292–296; MR0638285] who settled the existence problem when *d* is even, and when *d* is odd and *n* is odd. In this paper the existence problem is settled for Q_d -decompositions of $K_{x,y}$ when $d \in \{3, 4\}$, and for Q_3 -decompositions of K_n .

© Copyright American Mathematical Society 1995, 2016