SOME INEQUALITIES FOR THE MAXIMUM MODULUS OF RATIONAL FUNCTIONS

R. GARDNER, N. K. GOVIL and P. KUMAR

1 Department of Mathematics and Statistics
East Tennessee State University
Johnson City, Tennessee, U.S.A 37614
e-mail: gardnerr@etsu.edu

2 Department of Mathematics and Statistics
Auburn University
Auburn, Alabama, U.S.A 36849
e-mail: govilnk@auburn.edu

3 Department of Mathematics
Birla Institute of Technology and Science Pilani
K K Birla Goa Campus, Goa, India 403726
e-mail: prasannak@goa.bits-pilani.ac.in

Abstract. For a polynomial \(p(z) \) of degree \(n \), it follows from the Maximum Modulus Theorem that
\[
\max_{|z|=1} |p(z)| \leq R^n \max_{|z|=1} |p(z)|.
\]
It was shown by Ankeny and Rivlin in 1955 that if \(p(z) \neq 0 \) for \(|z| < 1 \) then
\[
\max_{|z|=1} |p(z)| \leq R^n + 1 \max_{|z|=1} |p(z)|.
\]
These two results were extended to rational functions by Govil and Mohapatra [4]. In this paper, we give refinements of these results of Govil and Mohapatra.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let \(\mathcal{P}_n \) denote the set of all complex algebraic polynomials \(p \) of degree at most \(n \) and let \(p' \) be the derivative of \(p \). For a function \(f \) defined on the unit circle \(T = \{ z \mid |z| = 1 \} \) in the complex plane \(\mathbb{C} \), set \(\|f\| = \sup_{z \in T} |f(z)| \), the Chebyshev norm of \(f \) on \(T \).

Let \(\mathbb{D}_- \) denote the region strictly inside \(T \), and \(\mathbb{D}_+ \) the region strictly outside \(T \). For \(a_v \in \mathbb{C}, v = 1, 2, \ldots, n \), let \(w(z) = \prod_{v=1}^{n} (z-a_v) \), \(B(z) = \prod_{v=1}^{n} (1-\overline{a_v} z)/(z-a_v) \) be the Blashke product, and \(\mathcal{R}_n = \mathcal{R}_n(a_1, a_2, \ldots, a_n) = \{ p(z)/w(z) \mid p \in \mathcal{P}_n \} \).

Then \(\mathcal{R}_n \) is the set of rational functions with possible poles at \(a_1, a_2, \ldots, a_n \) and having a finite limit at \(\infty \). Also note that \(B(z) \in \mathcal{R}_n \).

DEFINITIONS.

i: For polynomial \(p(z) = \sum_{v=0}^{n} a_v z^v \), the conjugate transpose (reciprocal) \(p^* \) of \(p \) is defined by
\[
p^*(z) = \overline{p(1/z)} = \overline{z^n p(1/z)} = \overline{a_0} z^n + \overline{a_1} z^{n-1} + \cdots + \overline{a_n}.
\]

* Corresponding author. N. K. Govil
1991 Mathematics Subject Classification. 30A10.
Key words and phrases. inequalities, polynomials, zeros.
For rational function \(r(z) = p(z)/w(z) \in \mathcal{R}_n \), the conjugate transpose, \(r^* \), of \(r \) is defined by
\[
r^*(z) = B(z)\overline{r(1/\overline{z})} = B(z)\overline{r(1/z)}.
\]

The polynomial \(p \in \mathcal{P}_n \) is self-inversive if \(p^*(z) = \lambda p(z) \) for some \(\lambda \in \mathbb{T} \).

The rational function \(r \in \mathcal{R}_n \) is self-inversive if \(r^*(z) = \lambda r(z) \) for some \(\lambda \in \mathbb{T} \).

It is easy to verify that if \(r \in \mathcal{R}_n \) and \(r = p/w \), then \(r^* = p^*/w \) and hence \(r^* \in \mathcal{R}_n \).

So \(p/w \) is self-inversive if and only if \(p \) is self-inversive.

Govil and Mohapatra [4] gave a result analogous to inequality (1), but for rational functions, as follows.

THEOREM A. If
\[
r(z) = \frac{p(z)}{w(z)} = \frac{p(z)}{\prod_{v=1}^n (z - a_v)} \in \mathcal{R}_n
\]
is a rational function with \(|a_v| > 1 \) for \(1 \leq v \leq n \), then for \(|z| \geq 1 \),
\[
|r(z)| \leq \|r\| |B(z)|.
\]

This result is best possible and equality holds for \(r(z) = \lambda \prod_{v=1}^n \frac{1 - \overline{a_v}z}{z - a_v} = \lambda B(z) \) where \(\lambda \in \mathbb{C} \).

In the same paper, Govil and Mohapatra [4] also proved a result given below that is analogous to inequality (2), but is for rational functions, as follows.

THEOREM B. Let
\[
r(z) = \frac{p(z)}{w(z)} = \frac{p(z)}{\prod_{v=1}^n (z - a_v)} \in \mathcal{R}_n
\]
with \(|a_v| > 1 \) for \(1 \leq v \leq n \). If all the zeros of \(r \) lie in \(\mathbb{T} \cup \mathbb{D}_+ \), then for \(|z| \geq 1 \)
\[
|r(z)| \leq \|r\| \frac{|B(z)| + 1}{2}.
\]

This result is best possible and equality holds for the rational function \(r(z) = \alpha B(z) + \beta \) where \(|\alpha| = |\beta| \).

In this paper we prove the following refinements of the above two theorems. Here \(p(z) = \sum_{v=0}^n \alpha_v z^v \) is a polynomial of degree \(n \).
THEOREM 1.1. If
\[r(z) = \frac{p(z)}{w(z)} = \frac{p(z)}{\prod_{v=1}^{n} (z - a_v)} \in \mathcal{R}_n \]
is a rational function with \(|a_v| > 1\), \(1 \leq v \leq n\), then for \(|z| \geq 1\),
\[|r(z)| \leq ||r|| \cdot |B(z)| \left\{ 1 - \frac{(||r - |r^*(0)||)(|z| - 1)}{|r^*(0)| + |z| ||r||} \right\}. \tag{5} \]
The result is best possible and equality holds for \(r(z) = \lambda B(z)\) where \(\lambda \in \mathbb{C}\).

It is clear that Theorem 1 sharpens Theorem A. Also, we can use Theorem 1 to derive a sharpening form of Bernstein’s Inequality for polynomials. For this, let \(p(z) = \sum_{v=0}^{n} \alpha_v z^v\) be a polynomial of degree \(n\). Then
\[r(z) = \frac{p(z)}{\prod_{v=1}^{n} (z - a_v)} \in \mathcal{R}_n \]
and hence by Theorem 1, for \(|z| \geq 1\),
\[\left| \frac{r(z)}{B(z)} \right| = \left| \frac{p(z)}{\prod_{v=1}^{n} (1 - \overline{a_v}z)} \right| \leq ||r|| \left\{ 1 - \frac{(||r - |r^*(0)||)(|z| - 1)}{|r^*(0)| + |z| ||r||} \right\}. \tag{6} \]
If \(z^*\) on \(|z| = 1\) is such that
\[||r|| = |r(z^*)| = \frac{|p(z^*)|}{\prod_{v=1}^{n} (z^* - a_v)} \]
then we get from (6)
\[\left| \frac{p(z)}{\prod_{v=1}^{n} (1 - \overline{a_v}z)} \right| \leq \frac{|p(z^*)|}{\prod_{v=1}^{n} |z^* - a_v|} \left\{ 1 - \frac{(||p - |p^*(0)||)(|z| - 1)}{|p^*(0)| \prod_{v=1}^{n} |z^* - a_v| + |z| |p(z^*)|} \right\}. \tag{8} \]
Since \(p(z) = \sum_{v=0}^{n} \alpha_v z^v\) and \(r^*(z) = \frac{p^*(z)}{\prod_{v=1}^{n} (z - a_v)}\), we get \(|r^*(0)| = \frac{|\alpha_n|}{\prod_{v=1}^{n} |a_v|}\) and therefore from (8) we have for \(|z| > 1\),
\[|p(z)| \leq |p(z^*)| \prod_{v=1}^{n} \left| \frac{1 - \overline{a_v}z}{z^* - a_v} \right| \left\{ 1 - \frac{|p(z^*)| - |\alpha_n| \prod_{v=1}^{n} |(z^* - a_v)/a_v|)(|z| - 1)}{|\alpha_n| \prod_{v=1}^{n} |(z^* - a_v)/a_v| + |z| |p(z^*)|} \right\}. \tag{9} \]
Since (9) holds for all \(|a_v| \geq 1\), where \(1 \leq v \leq n\), making \(|a_v| \to \infty\), where \(1 \leq v \leq n\), we get that for \(|z| \geq 1\),
\[|p(z)| \leq |p(z^*)| \prod_{v=1}^{n} \left| \frac{1 - \overline{a_v}z}{z^* - a_v} \right| \left\{ 1 - \frac{|p(z^*)| - |\alpha_n|)(|z| - 1)}{|\alpha_n| + |z| |p(z^*)|} \right\}. \tag{10} \]
We show in Lemma 5 in the next section that (10) implies for \(|z| \geq 1\)
\[|p(z)| \leq ||p|| \cdot |z|^n \left\{ 1 - \frac{(||p - |\alpha_n||)(|z| - 1)}{|\alpha_n| + |z| ||p||} \right\}, \]
which is equivalent to that for \(|z| = R \geq 1\),
\[|p(z)| \leq R^n \left\{ 1 - \frac{(||p - |\alpha_n||)(R - 1)}{|\alpha_n| + R ||p||} \right\} ||p||. \]
This rate of growth result for a polynomial, which is a sharpening of Bernstein Inequality, first appeared as Lemma 3 of [2].

As a refinement of Theorem B, we shall prove...
THEOREM 1.2. Let
\[r(z) = \frac{p(z)}{w(z)} = \frac{p(z)}{\prod_{v=1}^{n}(z - a_v)} \in R_n \]
with \(|a_v| > 1 \) for \(1 \leq v \leq n \). If all the zeros of \(r \) lie in \(\mathbb{T} \cup \mathbb{D}_+ \), then for \(|z| \geq 1\)
\[|r(z)| \leq \frac{1}{2} \left(|r||\{B(z)| + 1\} - (|B(z)| - 1) \min_{|z|=1} |r(z)| \right). \]

Clearly Theorems 1.1 and 1.2 without any additional hypotheses, give bounds that are sharper than those obtainable from Theorems A and B respectively.

2. LEMMAS

The following is a well known generalization of Schwarz’s Lemma (see, for example, [3]).

LEMMA 2.1. If \(f \) is analytic inside and on the circle \(|z| = 1\), then for \(|z| \leq 1\),
\[|f(z)| \leq \|f\| |z| + |f(0)|. \] (11)
The next two results are due to Govil and Mohapatra [4].

LEMMA 2.2. Let \(r \in R_n \) with all its poles in \(\mathbb{D}_+ \). If \(r \) has all its zeros in \(\mathbb{T} \cup \mathbb{D}_+ \), then for all \(|z| \geq 1\), \(|r(z)| \leq |r^*(z)|\).

LEMMA 2.3. Let \(r \in R_n \) with all its poles in \(\mathbb{D}_+ \). Then for \(|z| \geq 1\),
\[|r(z)| + |r^*(z)| \leq \|r\|(|B(z)| + 1). \]

LEMMA 2.4. Let \(r \in R_n \) with all its poles in \(\mathbb{D}_+ \). If \(r \) has all its zeros in \(\mathbb{T} \cup \mathbb{D}_+ \), then for \(|z| \geq 1\), we have
\[|r(z)| + (|B(z)| - 1) \min_{|z|=1} |r(z)| \leq |r^*(z)|. \] (12)

Proof. Since the rational function \(r \) has no zeros in \(\mathbb{D}_- \) hence for every \(\alpha \in \mathbb{C} \) with \(|\alpha| < 1\), the rational function \(r(z) - \alpha \min_{|z|=1} |r(z)| \) has no zero in \(\mathbb{D}_- \) and has all its poles, like \(r \), in \(\mathbb{D}_+ \). Applying Lemma 2.2 to \(r(z) - \alpha \min_{|z|=1} |r(z)| \) we get that for \(|z| \geq 1\)
\[|r(z)| + (|B(z)| - 1) \min_{|z|=1} |r(z)| \leq |r^*(z)|, \]
and so for \(|z| \geq 1\),
\[|r(z)| - |\alpha| \min_{|z|=1} |r(z)| \leq |r^*(z) - B(z)\alpha \min_{|z|=1} |r(z)||, \]
With the appropriate choice of arg(\(\alpha \)) we then have for \(|z| \geq 1\),
\[|r(z)| - |\alpha| \min_{|z|=1} |r(z)| \leq |r^*(z)| - |\alpha||B(z)| \min_{|z|=1} |r(z)|. \] (13)
Note that \(r \) has no zeros in \(\mathbb{D}_- \) and so is analytic in \(|z| \leq 1 \). Hence by the Minimum Modulus Theorem, we have \(|r(z)| > |\alpha| \min_{|z|=1} |r(z)| \) for \(|z| \leq 1 \). Therefore for \(|z| \geq 1 \) we get
\[
|r^*(z)| = |B(z)\overline{r(1/z)}| = |B(z)| |r(1/z)| > |\alpha| |B(z)| \min_{|z|=1} |r(z)|,
\]
which clearly implies that the right-hand side of (13) is positive. Making \(|\alpha| \to 1 \) in (13), we easily get
\[
|r(z)| + (|B(z)| - 1) \min_{|z|=1} |r(z)| \leq |r^*(z)|, \quad \text{for } |z| \geq 1,
\]
which is (12), and thus the proof of Lemma 2.4 is complete. \(\square \)

Lemma 2.5. The function
\[
g(x) = x \left\{ 1 - \frac{(x - |\alpha_n|)(|z| - 1)}{|\alpha_n| + |z|x} \right\},
\]
where \(\alpha_n, z \in \mathbb{C} \) with \(z \neq 0 \), is an increasing function for \(x \geq 0 \).

Proof. We have
\[
g'(x) = \frac{|z|x^2 + 2|\alpha_n|x + |z||\alpha_n|^2}{(|\alpha_n| + |z|x)^2} \geq 0
\]
for \(x \geq 0 \). So \(g \) is an increasing function for \(x \geq 0 \), as claimed. \(\square \)

3. Proofs of Theorems

Proof of Theorem 1.1. Since
\[
r(z) = \frac{p(z)}{w(z)} = \frac{p(z)}{\prod_{v=1}^{n}(z - a_v)} \in \mathcal{R}_n
\]
with \(|a_v| > 1 \) for \(1 \leq v \leq n \), the function \(r^*(z) = p^*(z)/\prod_{v=1}^{n}(z - a_v) \) is analytic in \(|z| \leq 1 \). Therefore by Lemma 2.1 we get that, for \(|z| \leq 1 \),
\[
|r^*(z)| \leq \|r^*\| \frac{\|r\||z| + |r^*(0)|}{|r^*(0)||z| + \|r\|}
\]
and since \(\|r^*\| = \|r\| \), inequality (14) is in fact equivalent to the inequality that, for \(|z| \leq 1 \),
\[
|r^*(z)| \leq \|r\| \frac{\|r\||z| + |r^*(0)|}{|r^*(0)||z| + \|r\|}
\]
Since by definition \(r^*(z) = B(z)\overline{r(1/z)} \), we get from (15) that for \(|z| \leq 1 \),
\[
\overline{r(1/z)} \leq \frac{\|r\|}{|B(z)|} \frac{\|r\||z| + |r^*(0)|}{|r^*(0)||z| + \|r\|}
\]
which clearly gives that for \(|z| \geq 1 \),
\[
|r(z)| \leq \frac{\|r\|}{|B(1/z)|} \frac{\|r\||z| + |r^*(0)||z|}{|r^*(0)| + \|r\||z|}
\]
It is clear from the definition of $B(z)$ that $|B(1/\tau)| = 1/|B(z)|$ and this, when combined with (16), gives that for $|z| \geq 1$,

$$|r(z)| \leq \|r\||B(z)||r| + |r^*(0)||z| \over |r^*(0)| + \|r\||z|$$

$$= \|r\||B(z)|(1 - ((|r| - |r^*(0)|)(|z| - 1)) \over |r^*(0)| + \|r\||z|),$$

which is (5) and this completes the proof of the Theorem 1.1. \Box

PROOF OF THEOREM 1.2. Since $r \in \mathcal{R}_n$ and has all its poles in \mathbb{D}_+ hence, by Lemma 2.3, for $|z| \geq 1$ we have

$$(17) \quad |r(z)| + |r^*(z)| \leq \|r\||(B(z)| + 1).$$

Because r has all its zeros in $\mathbb{T} \cup \mathbb{D}_+$ therefore we can apply Lemma 2.4 to r, and this will give that for $|z| \geq 1$,

$$(18) \quad |r(z)| + (|B(z)| - 1) \min_{|z|=1} |r(z)| \leq |r^*(z)|.$$

Combining the conclusion of (18) with (17) we get that for $|z| \geq 1$.

$$2|r(z)| + (|B(z)| - 1) \min_{|z|=1} |r(z)| \leq \|r\||(B(z)| + 1),$$

which is clearly equivalent to

$$|r(z)| \leq \frac{1}{2} \left(\|r\||(B(z)| + 1) - (|B(z)| - 1) \min_{|z|=1} |r(z)| \right),$$

and the proof of Theorem 1.2 is thus complete. \Box

References