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This thesis presents a probabilistic approach to the reconstruction of genealogies
within populations. The technique uses data such as that provided by DNA fingerprints.
Several conditional probabilities are derived which are used to put likelihoods on certain
degrees of relationship between pairs of individuals. Simulated data is generated for sev-
eral different genealogies and the model then takes the data and attempts to reconstruct
the genealogy. The results of this maximum likelihood analysis are discussed in light
of additional data, such as age structure. Finally, the strengths and weaknesses of this

approach are presented.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Wil]ja,m Amos of Cambridge University is quoted as saying “DNA fingerprinting
is the most useful technique to have been introduced into population biology” [Lewin
1989]. Tilis statement was motivated by the idea of applying DNA fingerprinting to
problems such as the one addressed here. The primary goal of this project is to use
DNA fingerprints of individuals from a population to determine the relative relatedness
of one to another, These values will then be used to break the population into related
groups. The average relatedness within each group and within the sample population
can then be calculated.

This problem is of interest for several reasons. For evolutionary biologists, the abil-
ity to backtrack to the ancestoral population would yield clues to who are the “fittest”
individuals; that is, those individuals that contribute the most to subsequent gene pools.
This information would be especially important in selective breeding programs in small
populations or endangered species. Also, inbreeding could be controlled in such a situa-
tion if relatedness between individuals were known.

In the area of behavioral ecology, DNA fingerprinting can produce information not
traditionally available. Relationships that were previously inferred from behavior, could
be determined from genetic data. This determination would give unambiguous measures
of reproductive success. In particular, cases of “infidelity” could be discovered and

questions of paternity could be answered. In turn, questions of altruism and kin selection



could be addressed. Applications of this type have already appeared. The technique has
been applied to a population of house sparrows [Wetton et al. 1987 and Burke and
Bruford 1987] to detect relationships that otherwise would have gone undetected (a case
of parent-offspring mating was detected as well as an extrapair copulation that resulted
in an offspring).

Information of this type also has been used in civil and legal cases. The nature of
these data allows the determination of certain relationships when intervening relatives
are missing (for example, maternity can be exhibited in the absence of the father [Jeffreys
et al. 1985]). A more direct application of DNA fingerprinting can be found in forensics,
where blood, semen, or hair samples are matched to suspects [Gill et al. 1987).

The process of producing DNA “fingerprints” was first described by Jeffreys, Wil-
son, and Thein [1985a]. The chromosomal region adjacent to the centromere in higher
eucaryotes is composed of very long blocks of highly repetitive DNA in which simple
sequences, called repeat elements, are repeated thousands of times or more. These re-
peating sequences often have compositions different from most of the organism’s other
DNA and can be seperated by centrifuging fragmented DNA in a cesium chloride (CsCl)
density gradient. DNA seperated by this process is called satellite DNA [see Wilson
et al. 1987]. The smaller fragments, the minisatellites, are highly polymorphic due to
variation in repeat unit length. Minisatellite-length-variation can be detected using re-
striction endonucleases. The digested DNA is then electrophoresed through agarose gel
and transferred by blotting to a membrane. The membrane is hybridized with radioac-
tively (*°P) labelled single-stranded DNA probes. After exposure to film, the resulting

pattern is called a DNA fingerprint.



1.2 History of Applications of DNA Fingerprinting to Population Genetics

Jeflreys, Wilson, and Thein [1985b] were.the first to present population genetic type
calculations for DNA fingerprint data. DNA fingerprints were made for 20 unrelated
British céucasians and pairwise comparisons were made as to the presence or absence
of bands. The probability of the presence of a band in an individual is said to be
P+ 2p(1 — p) = 2p — p? where p is the frequency of the allele producing that band.
This indicates that the presence of a band is behaving as a dominant trait would behave
in classical Mendelian genetics. As with any dominant trait, band presence does not
indicate whether an individual is homozygous dominant or heterozygous at the locus
in question. With estimates of band frequencies, Jeffreys et al. [1985b] proceeded to
estimate the individual specificity of a DNA fingerprint. Using the data from two probes,
they calculated probabilities of unrelated individuals having the same DNA fingerprint to
be 5x107'? (my recalculation from their data actually puts this probability at 5x10~21),
indicating that this method is indeed individual specific.

Jeffreys, Brookfield, and Semeonoff [1985] presented the following example of the use
of DNA ﬁngerprints in determining relationships: “The case concerned a Ghanaian boy
born in the United Kingdom who emigrated to Ghana to join his father and subsequently
returned alone to the United Kingdom to be reunited with his mother, brother and
two sisters. However, there was evidence to suggest that a substitution might have
occured, either for an unrelated boy? or a son of a sister of the mother... As a result,
the returniﬁg boy was not granted residence in the United Kingdom.” Conventional
genetic markers indicated that the woman and boy were related (with 99% probability),

but could not determine whether the woman was the boy’s mother or aunt. DNA



fingerprints were produced from blood DNA samples taken from the boy, the mother,
her three other children, and an unrelated individual. The father was unavailable. Based
on the probability of unrelated individuals sharing a band, the allele frequency for a band
was calculated to be p = 0.14 (all bands were assumed to have the same frequency). The
mother and boy were found to share 25 maternal specific bands. Based on this, it was
calculated that the probability of these two being unrelated was (0.26)%° = 2 x 10~15
(an allele with frequency 0.14 will appear in an individual with probability 2(0.14) —
(0.14)% = 0.26). The corresponding probability of the mother actually being the aunt
of the boy was said to be 6 x 1078, This latter calculation, however, was found to be
erroncous and declared irrelevant by Hill [1986) who approached this same problem from
a maximum likelihood viewpoint but reached the same final conclusion. The boy was
granted residence in the United Kingdom. The method used by Jeffreys et al. [1985] is
very restrictive and not suitable for general use in testing specified relationships.

The first to present a detailed account of the use of DNA fingerprinting in the esti-
mation of relatedness was Lynch [1988]). He showed that the proportion of shared bands
is a poor estimate of relatedness unless the frequencies of the bands are near zero [Lynch
1988, Figure 2|. This is not surprising since a high frequency band would be present
in significant numbers of unrelated individuals. So it is necessary to make a compen-
sation in the probability of shared bands for different band frequencies and degrees of
relationship (band frequencies in the above references ranged from 0.08 to 0.28). Lynch
proposed the following two equations for the relatedness of individual *B’ to individual

IA?:



where Spa is the observed similarity and 6, p is the expected similarity of B to nonrel-

atives, and

SBaA — él (1 - SBa)Var(6y)
- ETAD

TA'BA o~

where ; is an estimate of the average similarity between unrelated individuals, Lynch
discussed problems with both of these; where his primary concern was with determination
of 6, and ¢hp. I will use a method that is somewhat similar to this which requires the
computation of several conditional probabilites.

An additional problem addressed by Lynch was the fact that the variance of the
estimate of similarity between unrelated individuals may produce difficulties, in partic-
ular in the determination of relatively distant relationships. He concluded that “beyond
(and often including) second-degree relationships, DNA fingerprinting does not provide
a powerful means of assessing individual relationships.” I believe that this problem may
be addressed with accurate estimates of band frequencies estimated from large samples,
and sufficient numbers of closely related individuals to fill in ambiguities due to poorly

determined distant relationships.

1.3 History of the Reconstruction of Genealogies

The study of the construction of phylogenetic trees from genetic data is extensive
[see, for example, Hillis 1987 and Pamilo and Nei 1988]. Felsenstein has been particu-
larly active in the quantitative aspects of this problem [see Felsenstein 1981, 1982, and
1983]. However, this problem is only distantly related to the problem at hand, namely

the reconstruction of genealogies. One facet of the phylogenetic tree problem that does



carry over is the use of maximum likelihood estimates [Felsenstein 1981 and 1983]. Al-
though the literature on genealogical reconstruction is rather limited [see Cannings and
Thompson 1981 and Thompson 1986], the idea of maximum likelihood is always present.

Thompson [1986, Chapter 3] gave an algorithm and example of estimating relation-
ships and reconstructing gencalogies. The model was based on genotypic data and maxi-
mum likelihood estimates were generated based on the number of alleles shared at a locus
(0, 1 or 2) conditional on various relationships. It was commented that remote relation-
ships are difficult to distinguish from one another and that gencalogies will most likely
have to be rebuilt from the “most rea,dily-detected relationships, such as parent-offspring
or sib” [p. 55]. This is especially true with inbred populations, where the number of
possible sources for a given allele makes other approaches impractical. One problem
with this a,pproa;ch is the accurate determination of allele frequencies. Fortunately, it
was said [p. 51], the estimation of relationships is not sensitive to small variations in
allele frequencies.

Thompson [1986, Chapter 4] also presented methods for putting probabilities (likeli-

hoods) on pedigrees. The key expression was:

P(observed phenotypes | known inheritance model & hypothesized genealogy).

In a pedigree with no inbreeding, each intermediate individual (one with both parents and
offspring in the pedigree) will cut the tree into two components; a component containing
the parents and a component containing the offspring (in graph theoretic terms, the
vertex of the tree corresponding to this individual would be called a cut vertez, see Bondy
and Murty [1976] for graph theory definitions). Thompson calls such an individual, X,

a pivol individual and refers to the component of the pedigree containing X’s parents



as the “before” component and the other component as the “after” component. The

following probability was also defined:
Lx (%) = P(data after X | X has genotype 2).

This is fhe likelihood for the genotype of X, given the genetic data on individuals fol-
lowing him. It is possible to work up a genealogy; at each stage the contributions from
individuals after X in the genealogy are combined into the terms of Ly for each pivot
individual X in turn [p. 86]. If there is inbreeding, then the pedigree will no longer be a
tree and will contain loops. So it will no longer contain pivot individuals (cut vertices),
but will contain “cutsets” of individuals, whose removal from the pedigree break it into
two components. With the collection of cutsets, it is again possible to work through a
genealogy sequentially, as above [p. 94].

The cf)mputation of ancestoral likelihoods and founder genotypes has also been ex-

plored by Thompson [1986, Chapter 4]. The likelihood for given founder genotypes is
Lisunders(founder genotype set) = P(observed data | founder genotypes).

This likelihood depends on a known genealogy. One computation gives a likelihood over
all founder combinations and is independent of allele frequencies.

Once a genealogy has been established, average relatedness values are easily com-
puted. The process was described by Wright [1922]. If the individuals concerned are not
inbreed, then the length of the path from one to another determines the “coefficient of
relatedness” or the “coefficient of kinship”. If they are inbreed, then the number and
length of the paths from one to another determines this value. In either case, if the

genealogy is known, this is a minor problem.



1.4 Objectives

The main objective of this rescarch was to develop mathematical procedures for the
use of DNA fingerprints in the reconstruction of genealogies. In addition to this, conclu-
sions were drawn from the results concerning statistical parameters of the population,

including probable ancestory., My objectives were: -

1. develop methods appropriate for the pairwise determination of relationships using

DNA fingerprint data,

2. develop methods for the seperation of sample groups into groups of related individ-

uals,
3. determine the most probable genealogy for each group of related individuals, and

4. determine average relatedness within each group and average relatedness within the

entire sample.



CHAPTER 2

METHODS

2.1 Calculation of some Conditional Prohabilities

If a population is in Hardy-Weinberg equilibrium for a given trait, then certain condi-
tional probabilites concerning the presence or absence of the trait in individuals that are
related can be calculated. For example, if a certain individual demonstrates a trait, the
probability that his offspring, sibling, cousin, etc. also shows this trait can be calculated.

Consider a dominate trait with allele frequency p. For an individual X, denote the
homozygous dominant state as Xi, the heterozygous state as X2 and the homozygous
recessive state as X3. The different states of X have the following probabilities: P(X;) =
p?, P(X3) = 2p—2p%, P(X3) = 1-2p+p?. However, with a dominant trait, it is unlikely
that heterozygous and a homozygous dominant individuals can be distinguished. So
denote the presence of the trait as X — and P(X-) = P(X1)+ P(X,) = 2p — p*.

Similar calculations to determine the probabilities of a dominant trait appearing in
an offspring of an individual can be made. Denote the known individual as M and the
offspring as D. For this calculation, the other parent of D, say F', must be considered.
- First, the probability of the genotype of the parent F' must be calculated. Next, one can
calculate the probabilities for the different genotypes of D given M; and F;. Then the
probability of each genotype of D given the genotype of M can be derived. With the

values in Table 2.1 the probability of each possible genotype of D given any genotype of
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M can be calculated as follows:

P(Dy|My) = ZP(F})P(DIIMl and F}) = p,
j

P(DilMz) = 3 P(F)P(Dy|M; and Fy) = £,
i

P(D1|Ms) = ) P(F;)P(D1|Ms and F}) =0,
j

CP(DoMy) = Y P(F;)P(DyMy and Fj) =1~ p,

)

P(DoMs) = 30 P(F)P(Daldy and ) = 3,
P(DilMs) = iP(ﬂ-)P(DM and Fj) = p,
P(Ds|My) = E::P(F})P(DslMl and 1) = 0,
P(D3|M;) = Z:13(1?‘;-)})(1)311142 and Fj) =
P(Da|Ms) = iP(I?j)P(D3|M3 and Fy) =1—p.

7

l1-p

, and

But here, again, there is only concern with the presence or absence of the trait and the

following are obtained:

P(D - |M-)

= P((D1 or Dy)|(M; or My))

P((Dl or Dg) and (Ml or Mz))
P(Ml or Mg)
P((D1 and My) or (D, and M) or (Dy and My) or (D and M3))
P(M; or M)
P(M,)[P(Dy|M1) + P(Da| My )] + P(M2)[P(D1|X3) + P(D3|Mp)]
P(M1) + P(M3)
Plp+ (1 - )]+ 2p(1 - p)[5 + 3]
PP+2p(1-p) .
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Table 2.1: Conditional probability of genotype of offspring D given the genotypes of the
parents M and F.

M; F; P(DyM; and F;) P(Dy|M; and F;) P(Dg]M; and F;)

M F 1 0 0
1 1
M, F - -
1 2 5 2 0
M, B 0 1 0
1 1
F = ot
M, 1 2 5 0
1 1 1
My B 1 ) 1
1 1
F 0 — —
My Ty 2 2
My B 0 1 0
1 1
F Z fud
Mz F, 0 2 2

Mz F3 0 0 1
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1+p—p°
- a3

2-p
P(D - IMg) = P(Dl or DglMg))

= P(D1|M3) + P(Dy| Ms)
= 0-|-p

= P
P(M,)P(Ds|My) + P(M,)P( D3| My)
P(My) + P(Ms)
(#*)(0) + 2p(1 — p)[152]
2p-p?
_ 1-2p4p? and
2—-p '’

P(Ds{Msz) = 1-p.

P(Ds|M-) =

Now, consider the probability of the presence of a trait in a parent M given the
presence of the trait in the offspring D. In this case, also, the other parent F must be
considered. Again the probability of the genotypes of the parents, M; and Fj, given
the genotype of D, and the probabilities of the different states of D, given the different
possible genotypes of M and F (see Tables 2.2 and 2.3) are calculated. As before, the

following are obtained:

P(My|Dy) = > P(F;}P(My and Fj|Dy) = p,
i

Y P(F;)P(M,; and Fy| D) = g,

i

P(My|Ds) = > P(F;)P(M; and F;)Dy) =0,
i

P(M,|D3)
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P(M3|Dy)

> P(F;)P(M; and Fj|Dy) = 1—p,

]

1

P(My|Dy) = ) P(F;)P(M, and F;|D;) = 5
i

> P(F;)P(My and Fj|D1) = p,
j

> P(F;)P(My and Fj}Dy) = 0,
i

P(M;|Ds)

P(M3|Dq)

1—

P(Ms|D3) = 3 P(F)P(My and F;|D1) = — 2, and

J
P(M3|Ds) = Y P(F;}P(M and F;|D1) =1—p.
j R

Notice that these are the same conditional probabilities as obtained from Table 2.1.

And so, as before:

1+p-p°
P -|p-) =
P(M_|D3) = b

_ 2
P(Ms|D-) = l—;f;;'p-, and

P(MslD3) = 1-p.

These are the same probabilities as above, as expected, since these two cases are sym-
metric.
Now, for the calculation of the same type probabilities for two individuals that are

siblings, say S! and 2, the values from Tables 2.1 and 2.2 are employed. This leads to
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Table 2.2: Conditional probabilities of parental genotypes, M; and F}, given the genotype
of an offspring, D.

M; F; P(M;and F;|Dy) P(M; and F;|D;) P(M; and F;|Dg)
2

My B e 3 ;
M, K (1 - p) p2/2 0
My T 0 #(1 - 1)/2 0
M, F 2(1—-p) p?/2 0
M, F (1 - p)? p(1-p) e
Ma s 0 p(1-p) (1 - p)?/2
Ms B 0 p(1=p)/2 0
Mz F 0 (1-p)?/2 p(1—p)
Mz Fy 0 0 (1 p)?
where :
P(M; and F;|D;) = P(M; and Fﬂ))z()}l))ﬂM,- and Fy)
P(s and FDy) = TERSSTIA BT, ang

P(M; and F;)P(Ds|M; and F;)
P(D3) '

P(M; and F;|D3) =
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Table 2.3: Conditional probability of the genotype of an individual, §7, given the geno-
type of a sibling, $.

st P(S3IS1)  P(SFIS3)  P(S71S3)

@ 1t2+0"  pto? P’

1 4 4 4

N 1 - p? 14 p—p? 2p — p?
52 2 2 9

g2 L=2%+p® 2-3p+p’ d-dp+p’
3

4 4 4

the following calculations:

P(5}15%) = 3" P(M;and F;|S3)P(S1|M; and Fj)
2,4
_ 41 -p) (1) 2p°(1 - p) (1) 2p°(1 - p) (1) Pt
= pve )t T )t T (g) @
1+2p+p°
= pry,
P(51183) = Y. P(M; and F|$3)P(S}|M; and Fj)
1,4
4p*(1 - p)? (1) 2p°(1 — p) (1) 2p°(1 - p) (1)
= <)+ =)+ =
. 2x2p(1-p) \4 2x2p(1-p)\2 2% 2p(1—p) \2
p+p°
= 2
P($1153) = 3 P(M; and F;|S3)P(S}1M; and Fy)
i,
_ 41 -p)? (_1_)
T 4 -pp \4

pz

Z',
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P(5318F) = " P(M; and Fj|S3)P(SY M; and Fj)

Y

_ 41— p)? (1) 4 2%(1 - p) (1) ;2% —-p) (1)
- 4p? 2 2p? 2 2p? 2
1 —p2
= =L,
P(SHS2) = Y P(M; and Fj|S2)P(S}|M; and Fy)
i

2p(1 —p)° (1)+ 2(1—10)2() 2p(1 — p)3 (1)

T 2x2p(1-p) 2p(1 - p) 2 x 2p(1 - p)
p*(1-p)® (1 2°(1-p) (1Y P°(0-p)?
% 2p(1 - p) ( ) T o x 2p(1 ~ p) ( ) * 2p(1 - p) i=p) D
29°(1 ~ p) (1)
2 % 2p(1 — p) \2
_ l+p-p
2 ¥

P(53183) = ) P(M; and Fj|S3)P(53|M; and F;)

J

_ 2p(1-p)® (1N | 2p(1-p)® (1N | 4pY(1—p)? (1
21— p)? ( )+2p(1—p)2( )+ = p)y ( )
2p — p?

- H

2
P(S3S}) = 3 P(M; and Fj|S2)P(S3|M; and F})

Y

_ 4p2(ip§ p)’ ()

_ 1-2p4p?

4
P(53183) = ZP(M,- and F;|52)P(S}|M; and F})
_ ,2p(1 -p)? /1 2(1-p)® (1 4p*(1—p)* /1
2% 2p(1 - p) (5) t 2 x 2p(1 - p) (5) t 2 % 2p(1 — p) (_)

_ 2
= ———2 3p+p , and
4
P(53153) = Y P(M; and Fj|S2)P(S3)M; and Fj)

J



And so for siblings:

P(5' - |$%-)

P(83]5~-)

P(s" - |55)

P(53153)
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»)? 2p(1=p)® 1\ | 2p(1—p)° (1Y | 4p°(1—p)? (1
Ot S () s (3)* e )

P(SPP(S11ST) + P(S3ISB)] + P(SH[P(SE53) + P(51]53)]
P(8%) + P(5%)
PRI 4 107 91— p)[EdRl 4 Lin’
2p — p?
4+ 5p — 6p? + p°
, 2.1
12— p) 1)
P(SP)P(S318F) + P(5%)P(S3|52)
P(8}) + P(53)
(p%) 122812 | (1 — p)2=2eds?
2p — p?
4—9p + 6p? — p°
42-p) °
P(5115%) + P($3153)
2 2
P 2p—p
2t
dp — p?
4
4—4p+p?
—

(2.2)

, and

In fact, equation 2.1 has already appeared [Jeffreys, Brookfield and Semeonoff 1985].

Now I show that the calculations of the probabilities will allow a commuting of the

sibling step with the parent/offspring steps by showing that the numbers are the same

for an individual’s niece/nephew as they are for the individual’s aunt/uncle. Again,



denote the known individual as A and the niece/nephew as N. This yields the following
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(steping through the intermediate relative S, a sibling of A):

P(N1|Az)

P(N1|Az)

P(Ny|As)

P(No|A1)

P(N3|Az)

P(N2|43)

P(N1|851)P(51]A1) + P(N1|S2)P (82| A1) + P(N1|S3)P(83| A1)

142 2 1- 1-2 2
(») +2p+p +(2) P +(0) ?+p

4 4
p+ p
2 ;]
P(N1|81)P(S1|A2) + P{N1]|S2) P(Sq|A2) + P(N,|S3)P(S53|A2)
P+ p? g)1+p—p2 2-3p+p°
B+ () A 4 (0
P+ 2p?
4 b

P(N1|31)P(31|A3) + P(N1|S52)P(52143) + P(N1|53) P(S53]As3)

0+ (2) 25T 4 o2 te

»’
2!
P(Nng])P(SllA]_) + P(NgISQ)P(Sg|A1) + P(N2|S3)P(33|A1)

1+ 2p4pf (1)1—112 1-2p+p?
(l-p———+|5) 5 +@—

1+p-—2p°
9 3
P(Nzlsl)P(SllAz) + P(NzlSz)P(SgIAg) + P(NzlSa)P(SﬂAg)

p+p 1\ 14 p—p? 2 — 3p + p?
(1-p)PEEy (5) ALy (2= ke

144p - 4p
4"""‘_7
P(Nngl)P(S1|A3) + P(NgISQ)P(SzlAs) + P(N2|53)P(53|A3)

2 2 2
NP (1N 2p—p 4-4p+p
a-pk+ (3) 235+ 0 LA



P(N3|41)

P(N3|As)

P(Ns|A3)

And so:
P(N - |A-)
P(N3|A-)

19
3p — 2p?
9 ’
P(N3|51)P(S1|A1) + P(N3|52)P(52,A1) + P(N3|33)P(S3|A3)

142 LIS = 1—p? 1-2 2
(0)+p+p+( p)( 2p)+(1_P) p+p

4 2 4
1-2p+p°
2 3
P(N3|51)P(51|A2) + P(N3|S2)P(S52|A2) + P(N3|S3)P(53|A2)
p+p*  1-plip-p? 2-3p+p?
O—F—+— g t(l-p)—
3 — 5p + 2p?
4 and
P(N3|51)P(S51|43) + P(N3|82)P(S2|As) + P(N3|S83)P(S3|AAs)
2 2 2
p°  l1—p2p—p _ Ni-dp+tp
OF+ =5 tl-—y
2—3p+p?
—

P(A1)[P(N1|A1) + P(Na|As)] + P(A2)[P(N1|43) + P(Na]Az)]
P(A)) + P(Ag)
B 4 LR | g1 — p)[RE2ES 4 Lbdpcdp?)
2p — p?

1+ 5p — 5p* + p°
202-p)
P(A3)P(N3|A1) + P(A2)P(Na|Az) |
P(A1) + P(As)
(p7) 12242 | gp(1 — p)3=tet2e®

2p — p?
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3 — Tp + 5p% — p°
22-p)
P(N —|43) = P(N|ds)+ P(N2|43)

2 2
p° 3p~2p
= 9t

a2
= 3p2p,and
2 —3p +p?

2

P(N3lA3) =

Now, the same probabilities for an aunt/uncle of N, denoted A, are calculated (step-

ping through the intermediate relative 5, a parent of N):

P(A1|N1) = P(A1|31)P(31|N1)+P(A1|S-2)P(32IN1)

+P(A1|5'3)P(33'N1)

1424 p? 4 p? »*
= T @+ 0-n+50)
_ ptp

2
P(A]_’Ng) = P(AllSI)P(SllNg)-I-P(AllSz)P(Slez)

+P(A1|53)P(S3| N3)
_ 142p4p? (g)+p+p2 (1)+ P\1-p
- 4 2 4 2 4 2
P+ 2p?
= T
P(A1|N3) = P(Allsl)P(Slle)+P(A1lSz)P(Sg|N3)

+P(41]53) P( 53| Ns)



P(Ag|Ny)

P(A2|N7)

P(A3|N3)

P(As|Ny)

P(A3|N3)
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1+2p+pan+P+p(m+- T -7

P2

?$
P(A2|S1)P(53|N1) + P(AﬂSz)P(SglNl)

+P(A2I33)P(53|N1)

1-p? 1+ p— p?
5 @)+ —5——(

1+p-—2p°
2 H

P(A2|S1)P(51|N2) + P(AzlSz)P(SglNg)

+P(A3|S3) P( 83| N2)

1~ p? g)' 14p—p (1) 2p-p* (1-p
) Q t— 3) T2 ( 2)
1+ 4p — 4p?

4 ?
P(A3][51)P(51|N3) + P{AalS2) P(52|Ns)

+P(A2|83) P(S3|N3)
1~ p

1+ p—p? 2p— p?
PP )+ 21 g

0+~

3p 2p?
2 ¥

P(A3|$1)P(51|N1) + P(A3|852) P(S2|N1)

-|-P(A3|S3)P(S3|N1)

1- - 2 - 2
1—2p+p
2 bl

P(A3|S1)P(31|N2) + P(Angg)P(SglNg)

+P(A3183)P(S3|N3)
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_ 1-2p4p? (1_9)+2—3p+p2 (})+4—4P+p2 (1-P)
B 4 2 4 2 4 2
3 —5p+2p°

= —'4—""'"'—, and

P(As|N3) = P(A3|$)P(51|Ns) + P(A3|52)P (S| Ns)

+P(A3|S3)P(S,3|N3)

1-2p+9p? 2-3p+p? 4 —4p +p?
= a0+ W+ ———0-p)
_ 2=t
= It

Notice that these are the same as with the niece/nephew, and so:

14 5p — 5p% + p°

3—Tp+5p*—pd
P{A3|X-) = ,
2
P(A-|N3) = 5 5 £ , and
2—~3 2
P(43|N3) = __g+_p.

Now, the same probabilities for a grandparent, G, of X are calculated passing through

the parent, M, of X

P(G1|X1) = P(G1|M1)P(My|Xy1) + P(G1| M) P(M3| X,)



P(G]_ng) =

P(G1]X3)

P(G|X1)

P{G3|X2)

P(G2lXs)
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+P(G1|M3) P(M3] X1 )

()(®) + 51— p) + (0)(0)

p+p
2 b

P(Gi|M1}P(M1| X2) + P(G1|M2) P(M;| X)

+P(Gh| M3) P(M3]X3)

@ (5)+(5) (E) 0
P+ 2p*
4
P(Gl,MI)P(MllX;;) + P(G1|M2)P(M2|X3)

+P(Gh| M3) P(M3]X3)

(P)(0) + (0} + (0)(1 - )
pz

2 H
P(Ga)M1)P(My| X1) + P(Ga) M) P(Ma| X3)

-|-P(G2|M3)P(M3|X1)

(1= )+ 5(1 = 1) + (2)(O)

14p—2p?
5 ’
P(szMl)P(Mlng) + P(Gleg)P(leXz)

+P(Ga| M3)P(M3| X;)

(1- p)g + (%) (%)+ (p)-l-;—E

1+ 4p — 4p?
4 ?
P(Go| My} P(My]|X3) + P(Go| M) P(M2| X3)

+P(G2|M3)P(M3|X3)
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= (1-p)(0)+ 3() +2(1 - 7)

3p — 2p°

= 2

P(G3|X1) = P(G3|M1)P(M1|X1) + P(GslMQ)P(leXl)
+P (G| M3) P(Ms]Xy)

= O +520-n+a-2)0)

1-2p+p?
= —=2°F,

P(G3|X2) = P(G3|M1)P(M1|X2)+P(G3|M2)P(M2|X2)

+P(G3|M3)P(M3|X2)

- 012 (3) oty

- 92
= —3 5]1+p,a,nd

P(G3|X3) - P(G3|M1)P(M1]X3) + P(GalMg)P(Mngg)

+P(G3|M3) P(M3]X3)

= OO+~

2 —3p 4 p?
—

o)+ (1 -p)(1-p)

These are the same as with the niece/nephew and aunt/uncle probabilities, so:

1+ 5p— 5p? + p°

22~-p)
3~ T7p+5p*—p?
P(G3IX_) = 2(2_1;) )

P(G-|X-) =
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2
PG —|Xs) = 3p2p,and
2—3p+p°
P(Gs)X3) = #.

Due to the symmetry established above, these are also the probabilities for grandchil-
dren. Surprisingly, even though the probabilities for parents and offspring were different
from those of siblings, the grandparent/grandchild probabilities are the same as the
aunt/uncle and niece/nephew probabilities. So, if the relationship between two indi-
viduals is known, the relavent probabilites can be calculated by simply using a series
of parent/offspring steps (provided they are not siblings), and a sibling step which, if
present, counts the same as a parent/offspring step.

If two (noninbred) individuals, denoted X and Y, are related, then they share many
common ancestors. In one particular generation, they must share exactly two ancestors.
Suppose these two ancestors occur n; generations before individual X and n, generations
before individual Y. Then X and Y are n-degree relatives, where n = ny + ng — 1.

Now, consider an individual that is an n-degree relative of X (e.g. if n = 2 this
is a grandparent, a grandchild, an aunt, a niece, etc.), say G™. Then the following
probabilities are derived, which have been established for n = 1. Again, siblings are

special and these formulae do not hold in that case:

P + (211.—1 _ 1)p2
on—1 ?
p+ (2" —2)p°
2n ’

P(GTX0)

P(GT|Xs) =
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P(GY|X5) = %{:}];pz,

Aoy - LEE=SE ot

P(G3Ixs) = T e - (@ - 4y
Py = &= 1)192:_(12“ - 20"

pegiy = U= oD@ Sl
Py = ENEE I E I
) = B

Each of these can be established by mathematical induction, assuming all to be true

for n and showing that this yields the expected answer for n + 1.

P(GTHIX1) = P(GTPIGY)P(GHIX1) + P(GTH|G3) P(G31Xy)

+P(GTH1GE) P(GE1X1)
271—1 -1 2 no__ _{on __ 2
_ (p)p+( = )p N (g) 1+ (2" =-3)p—-(2"-2)p

2 gn—1
2n—1 — (9" —_9 2n—1 . 2
L&) = Dp (- 1
_ pt(2r-1)p?
= on ,

P(GIFXa) = P(GTTIGY)P(GTIX2) + P(GTH|GE)P(GEIX)

+P(GT|G5) P(G31X3)

- Rt (2" - 2)p” | (2) 14 (2711 — 4)p — 27+ — 4)p?
on D 9n
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(2" ~1) - (2 ~ 3)p + (2" ~ 2)p?
211.

+(0)

P+ (2n+1 _ 2)p2
on+1 ’

P(GITXs) = P(GIHIGY)P(GYIXs) + P(GTH|GE)P(GE Xs)

+P(GyGE) P(GE1 X)
or—1 1 2% — 1)p — (27 — 2)p?
— (p)zn—-lpz + (2) ( )P ( )P

2 2'n.—1
27— (20— Dp+ (27 - 1)p°
+(0) gn—1
2’”’ - ]. 2
= 2“‘ p ¥

P(G3F1X) = P(GGRIP(GT|X1) + P(G3H|GE)P(GE1X)

+P(G3HIGE)P(GEIX1)

+ (271 — 1)p? 1\ 14 (2% — 3)p — (2" — 2)p?
C eptt @ (1) 1@ e

+(P) (2n—1 — 1) — (gn;,,_?l)p-l_ (2n—1 - 1)]92

14 (2n+1 _ 3)p . (2n+l _ 2)192
A ’
P(G3HXy) = P(G3GT)P(GT|Xs) + P(G3HG3) P(G3X2)

+P(G3GE)P(GEX2)

2" . 2)p? 1\ 14 (2711 4)p — (271 — 4)p2
Ryt LC AL SN EVEET A Rt
o2m — 1) — (27T — 3)p + (27 — 2)p?
WG R i) LG,
B 1_|_(2n+2_4)p__(2n+2___4)p2

2n+1

P(GHXs) = P(G3HGYP(GY1Xs) + P(G3HG3)P(GEXs)

+P(G3|GE)P(GE | X3)

-1l 1\ (2" — 1)p — (2* — 2)p?
= -Gt (5) 5




P(G3™|Xy)

P(G3H[Xy)

P(GEH|Xs)

From which:
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2n—1___2n___1p+ 2n—1__.1p2
el i A )

(2'n.+1 _ I)P _ (2'n.+1 _ 2)p2
om !
P(G3HGY)P(GT1Xa) + P(G3T |G P(G3| X1)

+P(G3H|GE) P(G}| X1)

+ (2 = 1)p? (1-p) 1+ (2" = 3)p— (2" - 2)p?
) (2%1 )P ( 2?) ( 2)f_l( )p

+(1— p)(zn_1 -1)- (2”;f3p + (271 —1)p?

(2" ~ 1) = (2™ = 2)p+ (2" — 1)p?
2 ’
P(G3TGT)P(GTIX,) + P(G5T|GE)P(G} | Xz)

+P(G5H|GR)P(G1X>)

(02 + (2" - 2)p* + (1 —~ p) 14 (2™ — 4)p — (27 — 4)p?
9 ) 7

(- T =D = 2

(21 — 1) — (272 - 3)p + (27H1 — 2)p?
ontl

P(GEM|GT)P(GY|Xs) + P(G3H|GF) P(GE1 Xs)

, and

+P(GE*|GF)P(GEXs)

(0)2“2“:; L3y (1 - p) (2" —1p— (2" —2)p’

2 on—1
an—1 _ (gn _ 1 + on=1 _ 1\p?
L Tk
9" — (2 — 1)p 4 (2" - 1)p?
2n '



20

P(G" - 1X-) {P(X)[P(GT]X1) + P(G3]X1)] + P(X3)[P(GT]X2)

+P(G3| X)1}/[P(X0) + P(X3)]

2 [P+ -1)p® 1+ (27— 38)p— (2" — 2)p?
p gn—1 + gn—1

+2p(1 -~ p) [p u (2;_ DL 4)12); S 4)p2] } / (2p-p%)

14 (2 = 3)p - (27 = 3)p 4 (21— 1)y
2n=1(2 — p) !
P(G" —|X3) = P(GY|X3)+ P(G3|X3)
n—1 _ o _{on _ 2
— 227‘1—-11(132) + (2 1)p2n_(12 2)p
(2" = )p— (2" — 1)p”
gn-1 !
P(X1)P(GE|X1) + P(X2)p(G3|X3)
P(X1)+ P(Xy)

(%) (2"-1—1)—(2“2;g)lp+(2"—1-1)::2 +2p(1 - p) (2“—1)—(2“’*'12;-"s)p+(2"—2)p2

(2.3)

(2.4)

P(@3IX-) =

2p - p?

2" — 1) = (5 x 2871 = 3)p + (27 — 3)p? — (21 — 1)p®
= ( )= { 2?3_1(2(_ 5 ) ( ) , and (2.5)
2l - (20 )p+ (27— 1)

gn—1 N

P(G3|X3) = (2.6)

Now some observations about these formulae can be made. Table 2.4 lists these
conditional probabilities for various values of » and p. Notice that the probabilities for
siblings are slightly higher than the corresponding probabilities for degree one relatives,
although the numbers are very close in size. Notice that if a limit as » approaches infinity

is taken, in each of the above formulae, the probability of the presence or absence of the
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Table 2.4: Conditional probabilities of an individual displaying a dominant trait of allele
frequency p, given an n degree relative displays the trait,.
Allele Frequency (p)

| » Jo.o0]o.10]0.20]0.30]0.40]0.50]0.607]0.70 0.80 [0.90 ] 1.00 |

SIBS | 0.50 [ 0.58 | 0.66 | 0.73 | 0.80 | 0.85 | 0.90 | 0.94 | 0.97 | 0.99 | 1.00

1 0.50 | 0.57 1 0.64 [ 0.71 [ 0.78 | 0.83 | 0.89 | 0.93 | 0.97 | 0.99 | 1.00
2 0.25 ] 0.38 | 0.50 | 0.61 [ 0.71"| 0.79 | 0.86 | 0.92 | 0.96 | 0.99 | 1.00
3 0.1310.29 |1 043 | 0.56 | 0.67 { 0.77 | 0.85 | 0.92 | 0.96 [ 0.99 | 1.00
4 0.06 ] 0.24 | 0.40 | 0.54 | 0.66 | 0.76 | 0.85 | 0.91 | 0.96 | 0.99 | 1.00
o | 0.00]0.19]0.36 { 0.51 | 0.64 | 0.75 | 0.84 | 0.91 | 0.96 | 0.99 | 1.00

trait is (as expected, since random mating with unrelated individuals is assumed):

P(G®-|X-) = 2p-p?

P(G™ — | Xa) 2p - p*,

i

P(GPIX-) = (1-p)? and

P(GFIXs) = (1-p)*

Notice that if p = 0, then P(G" — |X-) = (%)n which is twice the coefficient of rela-
tionship [Lynch 1988, Smith 1989 and Wright 1922].

Although the following probabilities are not employed in my subsequent modelling,
I do include them here because of their similarity to the previous results. I wish to
explore certain special cases where inbreeding is present. If two siblings S and 52 have

an offspring D then Tables 2.1 and 2.3 yield:
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P(D4fS}) = 3. P(S2|S})P(Dy|St and §2) = 1_“;_?3,
J

1 2| ol 1 2 14 2p

P(D1|S3) = 3O P(S}ISHP(D1IS] and 87) = ——,
i

P(D1|$5) = D P(57183)P(D1}55 and 57) = 0,
i

| .
P(Do|S]) = Y P(SHSDP(DalS] and §3) = —E,
3

P(DoS}) = 3 P(S?ISHP(DylS} and §2) = <,
J

P(Dq)S3) = Y P(5%53)P(Ds|S} and §%) =
7

b}

MRS | =

P(D3|87) = D_P($351)P(Ds|51 and 5) =0,
7

3—-2p
8
2-p

P(Ds|S3) = > P(5%55)P(Ds|53 and 3}’)—;—2——.
i

P(D3|$3) = Y P(5715;)P(D3|S3 and §}) = , and
- 3

From which:
P(D-|§'-) = P(SH[P(D1]S7) + P(Da|S1)] + P(SHIP(D1]53) + P(D2]53)]
P(SD) + P(S})
_ (PP M2 + L52] 4 2p(1 - p)[ 122 1 L
2p —p2
_ S4p-2?
T 42-p)

P(D-|83) = P(D1lS3)+ P(DalS3)
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P
25
P(81)P(D3|ST) + P(53)P(Ds)53)
P(S81)y+ P(53)
(p2)(0) + 2p(1 — p) 3522
2p — p?
_ 3—5p+2p?
© Tae-p M
2—-p

P(D3|53) = —

D2 3

P(D3|8'-) =

Now consider a similar case, where an individual X mates with an n-degree relative

G™ producing an offspring D. See Tables 2.1 and 2.5, These follow:

14 (2" —1
PDiXy) = 3 P@HX)P(DiIX and ) = LEE =D
i
' 14 (2"t -2
P(Di|Xy) = ) P(G}|X5)P(D1)X; and G3) = * oz i3

J
P(Di|X3) = ) P(G}|Xs)P(D1X5 and G}) =0,
J

2 -1 —-(2* - 1)p,

P(Dq|X1) = ) P(G}|X1)P(D4|X1 and G?) = o
j

1
P(D2|X2) = Y P(G}|X2)P(D2|Xz and GF) = 5
i
P(Dy|X3) = 3 P(G7|X3)P(Dy X3 and G¥) =
i
P(Dg|X1) = > P(G?|X1)P(Ds|Xy and G7) = 0,
3

(2" -1)p
on

(2n+1 _ 1) _ (2n+1 - 2)p
2n+2
" — (2" — 1)p
2n ‘

P(D3|X2) = ZP(G?IXg)P(D3|X2 and G;L) = ' and
3

P(D3|X3) = ZP(G?|X3)P(D3|X3 and G?) =
J
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Table 2.6: Conditional probability of genotype of an n-degree relative, G, of an indi-

2

vidual X.
G} P(G71Xy) P(G}|X5) P(GF]X3)
G;" 2+(2n—11_1)p2 E+(2;_ 2) E2 [2:1-—1_111?2
an— . i gn—
G 1+(2"-3)p—~(2"—2)p* 14-(2™4! —4)p—(2nH —4)p? (27-1)p—(2"—2)p’
2 an—1 or gn=]

Gr @r-1)-(2R-2)pt (27 -1)p?  (27-1)-(2%H 3)p (27 -2)p?  2PTl-(27-1)p4 (277 - 1)p?
21’1

gn—1

an—1

And hence:

P(D —|X-)

P(D - |X3)

P(D3)X-)

P(D3| X3)

P(X)[P(D1]X1) + P(Da] X1)] + P(X5)[P(D1] X5} + P(Ds| X5)]
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Notice that for » = 1, this reduces to the case of mated siblings. Also, for any par-
ticular type of inbreeding, say continued brother/sister mating, it is possible to calculate
these type probabilities. The calculations {although tedious) would employ the methods
used here, that is, the construction of tables of the nine possible genotypes of the parents

with the corresponding conditional probabilities.

2.2 The Model

I will use the conditional probabilities of the previous section to put likelihoods on
different degrees of relationship of pairs of individuals. In order to test this approach, 1
have written programs that generate DNA fingerprint type data. See the Appendix for
the program listings. The programs are written in Fortran 77 and were ran on a VAX
minicomputer and an IBM compatible personal computer. The programs require the
input of allele frequencies and a genealogy for the model population. Each individual
of the population must have either no parents present in the model population or ex-
actly two parents present. The “parentless” individuals are randomly assigned genotypes
according to the allele frequencies and then genotypes are generated for the remaining in-
dividuals assuming Mendelian inheritance and a given rate of mutation. The phenotypes
of the individuals are then used to reconstruct the genealogy using mla.ximum likelihood
estimators.

The program FREQDAT.FOR allows for the input of the number of loci to be con-
sidered, the number of individuals in the hypothetical population, and the number of

alleles at each locus, The alleles at a given locus are assumed to be equally frequent,
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For example, if the number of alleles at a given locus is 20, then each allele is assumed
to have a frequency of 5%. Although this may seem a bit restrictive, if several alleles
of different frequencies are desired, this can be accomplished by using several loci with
different numbers of alleles at each. The information that the user gives this program is
stored in a file.

The program GENDAT.FOR takes as input the size of the model population and the
genealogy for that population. The genealogy is stored in a file as a square matrix, A,
which is the adjacency matriz for the parent — offspring directed graph, G (see Bondy
and Murty [1976] for definitions of graph theoretic terms). That is, the entry a;; of A is
1 if individual ¢ is the parent of individual j and 0 otherwise. In order for the following
programs to work, each individual must have either 0 or 2 parents present in the model
population. In graph theoretic terms, the in-degree of each vertex of the graph G is either
0 or 2. Notice that the out-degree of vertex ¢ is the number of offspring of individual ¢
that are present in the model population.

The program GENOME.FOR is the program that actually generates the genotypes
for the individuals of the model population. The program reads population size and
allele frequencies from the file created with the FREQDAT.FOR. program and reads the
genealogy matrix from the file which was created by GENDAT.FOR. As described above,
the members of the model population fall into two categories: those with no parents
present in the model population and those with two parents in the model population.
Individuals of this first type are randomly assigned a genotype based on allele frequencies.
For example, if a particular locus contains 20 alleles, then a first allele is chosen with

there being a 5% probability of any one allele getting picked, and then a second allele
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is (independently) chosen under the same conditions. So at this locus, the probability
of homozygosity of any given allele is 0.25% and the probability of heterozygosity is
95%. Once the genotypes of the “parentlesé” individuals are assigned, the remaining
genotypes are generated according to the genealogy which was input. Simple Mendelian
inheritance is followed. At a given locus, one allele is inherited from each parent. The
allele inherited from each parent is chosen with an equé,l probability from the two present
at that locus. The program also allows for a certain level of mutation. The mutation rate
is measured per allele. Once a genotype has been given to an individual with parents
in the model population, each of the alleles is “tested” for mutation. Depending on the
mutation rate, substitutions are randomly Iﬁa,de for any allele at the locus. This process
carries the advantage of allowing not only for mutation, but also for laboratory error.
Since this model is intended to deal with DNA fingerprint data, it is quiet likely that
particular bands could be misread and confused with other bands. Also, if all the alleles
are flawlessly passed on, it is rather easy to check pairwise for parents (each allele in the
offspring must come from one or the other of the parents in the absence of mutation).
Finally, the genotypic data for all the individuals is stored in a file. It is this data that
will be used to reconstruct the genealogy.

The program RECONSTR.FOR, is the heart of this project. It is this program that
would evaluate data gathered in the lab, The input which is read from the file created
by GENOME.FOR is simply the number of individuals and the genotypes of each, The
program views the data “with a blind eye” in the sense that it does not make a distinction
between an allele being present in the homozygous or heterozygous state. That is, the

program onl_y recognizes the presence or absence of an allele (i.e. the phenotype of the
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individual). First, the frequency of each trait is estimated. Assuming Hardy-Weinberg
equilibrium, if a dominant trait is determined by an allele with frequency p, then the trait
has frequency f = 2p — p?. So the allele frequency can be estimated asp =1 — /T — J.
Next, the likelihood of each relationship is calculated for all possible pairs of individuals.
For any trait (or allele) present in the model population, there are four possibilities when
one compares two individuals. There is an equation from the previous section associated

with each possibility. The four cases are:

L. the trait is present in both individuals, in which case equation (2.3) is the associated

equation,

2. the trait is present in the first individual, but not in the second, in which case

equation (2.4) is the associated equation,

3. the trait is absent in the first individual, but present in the second, in which case

equation (2.5) is the associated equation, and

4. the trait is absent in both individuals in which case equation (2.6) is the associated

equation.

The probability of each case must be computed for various degrees of relationship. Given
that ¢ and § are n degree relatives, the probabilities associated with the four cases for a

trait with allele frequency p are, respectively:

P(i— and j=) = P(i-)P(j - |i-)

1+ (2n+1 - 3)P - (2n+1 _ 3)P2 + (211,-1 _ 1)P3
2n-1(2 - p) ’

= (2p-p%) (2.7)

P(i — and j3) P(i=)P(jai-)
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(. - 2n—1 -3 2n+1 _ 2 _ fon-1 __ 3
= (2~ pz)(Q 1) — (5% 23{’1‘2'2(_ - 3)p* — (2 Lp ,

(2 = p— (5% 271 = 3)p? + (27 — 3)p — (271 — 1)y
9n—-1 ’ ’

(2.8)

P(ig and j—) = P(is)P(j — |ia)

_ @2 -1 - (x 2 - 3pt (2 - 3" — (27! — 1)

= 2n—-1(2 - ) ’

_ (@ -Dp-(5x2m - 3)p;:_—1(2“+1 k) il Cittateek V) (2.9)
P(iz and j3) = P(iz)P(ja|is)

o (2.10)

Let the events described by cases 1, 2, 3 and 4 be denoted by FE,, E3, E3, and E,,
respectively. From equations (2.8) and (2.9), it follows that the probabilities for events
Ey and Eg are the same for each allele. This means that there is, as expected, a symmetry
and so the likelihood of “i is an n degree relative of j" and the likelihood of “j is an n
degree relative of i are the same. Hence one need only deal with the event “; and j are
n degree relatives”.

Now, introduce the variable z,. Let 2, take on the values —1, 0, or 1 as follows:

—1 if E4 describes the situation for allele o
Ty = 0 if Ey or FE3 describes the situation for allele a

1 if By describes the situation for allele «.
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If p is the frequency of allele @ then:

z, = —1 with the probability given in 2.10
2, = 0 with the probability given in 2.8
s, = 1 with the probabiltiy given in 2.7

If these three probabilities are denoted as g,, 74, and ¢, respectively, then the likelihood

that ¢ and j are n degree relatives is

I1 Palwa=1)/2 pl-ad a(wat1)/2 (2.11)
2 is an allele

RECONSTR.FOR uses expression (2.11) to put likelihoods on different degrees of re-
lationship between ¢ and j. For computational reasons, the program calculates the
logarithm of the likelihood, as opposed to the likelihood itself. This will help avoid
roundoff error that might arise when dealing directly with the likelihoods since they
will, in general, be very small numbers. Since the logarithm function is an increasing
function, the maximum logarithm of the likelihoods will correspond to the maximum
likelihood. Once the maximum likelihood is chosen, the corresponding degree of rela-
tionship is associated with the pair < and j. These values are stored in a distance matrix
which RECONSTR.FOR writes to a file.

The final program in the model, MATRIX.FOR, simply puts the output in a readable
format. This program prints in a file the names of the genealogy file, the frequency file,
a,ﬂd the genome file, as well as the size of the model population and the data in the

frequency file. Finally, of course, the distance matrix is printed in the file. In order to
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view the results of this model run, it is the file created by MATRIX.FOR, that must be

used.



CHAPTER 3

REsULTS

The results of running the model described in Chapter 2 on several genealogies are
discussed in this chapter. The genealogies will be refered to as “Genealogy 1” through
“Genealogy 6”. Each genealogy was ran in the model several times. Each run involves
a different value for one of the following parameters: number of loci, allele frequencies,
and mutation rate per allele. Genealogies 1, 2 and 4 are given in Figures 3.1, 3.2 and 3.3,
respectively. Genealogy 3 is a sample of 10 unrelated individuals, Genealogy 5 includes
the population from Genealogy 4 along with 10 unrelateds, and Genealogy 6 includes
the population from Genealogy 4 along with 20 unrelateds.

When estimating relationships between pairs of individuals, there are two ways to
view the results. The percentage of actual degree n relationships recognized as degree
7 relationships is one statistic that can be associated with the results, This number
describes the ability of the algorithm to recognize certain degrees of relationships. A
second statistic associated with the output is the percentage of relationships said to be
degree n, that actually are. This describes the level of confidence one can put in the
resulis of the model. For example, the model might only accurately recognize 70% of the
first degree relationships, but each time the model indicates a first degree relationship,
it could be correct. That is, one can put 100% confidence in the model when it indicates
a degree one relationship. However, there must be less confidence in the degree two
or higher relationships since it has said that 30% of the first degrees must fall in these

categories.

41
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3.1 Genealogy 1

Genealogy 1 consists of 33 individuals with 4 groups of related individuals, 5 indi-
viduals unrelated to any others in the sample, two pairs of siblings, and several 37 and
4™ degree relationships (see Figure 3.1). Namely, there are 28 first degree relationships,
14 second degree rolationships, and 486 third or higher degree relationships (including
unrelated).

Genealogy 1 was chosen for analysis because it contains a variety of different rela-
tionships. It includes one large clan of 15 related individuals spanning four generations.
It includes a smaller group (of size 5) which spans three generations. It also has two
pairs of parents which each produce a pair of siblings.

Genealogy 1 might represent samples taken from different arcas, or a single sample
from a large population with small groups of related individuals. These groups would
be unrelated or distantly related to one another.

Tables 3.1 and 3.2 summarize the results of running Genealogy 1 with no mutations,
10, 20 and 30 loci, and 2%, 5%, 10% and 20% allele frequencies. As can be seen,
the model is quite successful with first degree relationships and unrelated pairs. It is
significantly less successful with second degree relationships, however,

As expected, the higher the mutation rate, the less successful the model. However,
with the mutation rate as high as 30%, the model is still surprisingly accurate with first
degree relationships and with unrelateds.

To test the effects of mutations, the model was ran several times with a constant

number of loci (20) and various allele frequencies. Tables 3.3 and 3.4 report the results
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Figure 3.1: Genealogy 1. The edges represent degree one relationships, either parent-
offspring or siblings. '
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Table 3.1: These entries are the results for Genealogy 1 with no mutations and various
values of the number of loci and allele frequencies. In this table, “% ... correct” is the
percentage of the model ocutput that is correct. These values indicate the confidence one
can put in the model output.

number allele % relationships % 1% degree % 27¢ degree % unrelated

ofloci frequencies correct correct correct correct
10 2% 98.67 1060.00 88.89 98.79
10 5% 97.54 100.00 52.94 98.97
10 10% 93.56 91.30 22.86 98.93
10 20% 84.47 80.77 5.41 ~ 98.36
20 2% 99.05 100.00 90.91 99.18
20 5% 98.86 100.00 83.33 99.18
20 10% 98.67 96.43 73.33 99.59
20 20% 93.75 82.35 21.05 98,73
30 2% 99.24 100.00 91.67 99.39
30 5% 90.05 100.00 90.91 99.18
30 10% 98.86 100.00 78.57 99.39
30 20% 95.08 96.55 25.93 08.74

Table 3.2: These entries are the results for Genealogy 1 with no mutations and various
values of the number of loci and allele frequencies. In this table, “% ... recognized”
indicates the percentage of a particular type of relationship that was correctly identified,

number allele % relationships % 1% degree % 27¢ degree % unrelated

of loeci  frequencies recognized recognized recognized recognized
10 2% 98.67 100.00 57.14 99.79
10 5% 97.54 100.00 64.29 98.35
10 10% 93.56 82.14 57.14 95.27
10 20% 84.47 75.00 28.57 86.63
20 2% 99.05 96.43 71.43 100.00
20 5% 98.86 96.43 71.43 99.79
20 10% 98.67 96.43 78.57 99.38
20 20% 93.75 82.14 35.71 96.09
30 2% 99.24 96.43 78.57 100.00
30 5% 90.05 96.43 71.43 100.00
30 10% 98.86 92.86 78.57 99.79

30 20% 95.08 85.71 50.00 96.91
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Table 3.3: Results for Genealogy 1 with 20 loci and various values of allele frequencies
and mutation rates. '

mutation allele % relationships % 1% degree % 2" degree % unrelated

rate frequencies correct correct correct correct
10 2% 97.16 100.00 46.15 98.38
10 5% 96.78 100.00 40.00 98.37
10 10% 96.59 96.55 40.00 98.77
10 20% 94.13 100.00 25.71 098.94
20 2% 94.51 100.00 14.29 97.79
20 5% 95.27 100.00 21.05 97.98
20 10% 93.94 96.55 12.50 97.79
20 20% 90.15 100.00 10.42 98.08
30 2% 93.56 100.00 8.33 97.79
30 5% 93.75 100.00 15.38 97.98
30 10% 92.61 100,00 12.90 97.57
30 20% 88.45 100.00 9.26 97.45

Table 3.4: Results for Genealogy 1 with 20 loci and various values of allele frequencies
and mutation rates.

mutation allele % relationships % 1°* degree % 2°? degree % unrelated
rate frequencies recognized recognized recognized recognized
10 2% 97.16 75.00 42.86 100.00
10 5% 96.78 75.00 42.86 99.59
10 10% 96.59 71.43 57.14 99.18
10 20% 94.13 71.43 64.86 96.30
20 2% 94.51 35.71 21.43 100.00
20 5% 95.27 50.00 28.57 99.79
20 10% 93.94 42.86 21.43 98.97
20 20% 90.15 42.86 35.71 94.44
30 2% 93.56 21.43 14.29 100.00
30 5% 93.75 21.43 28.57 99.79
30 10% 92.61 14.29 28.57 98.97

30 20% 88.45 14.29 35.71 94.24
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for a mutation rate of 10%, 20%, and 30% per allele and for allele frequencies of 2%, 5%,

10%, and 20%.

3.2 Genealogy 2

Genealogy 2 consists of 26 individuals which make up four groups of related indi-
viduals. The sample has six pairs of sibiings and several second degree relationships
(see Figure 3.2). Namely, there are 34 first degree relationships, 12 second degree rela-
tionships and 279 unrelated pairs. Genealogy 2 does not contain quite the diversity of
relationships of Genealogy 1. This example might represent a sample from a population
of organisms with a long generation time. With the absence of inbreeding, this geneal-
ogy could represent a population with many isolated groups. One important difference
between this genealogy and Genealogy 1 is the absence of unrelateds in this population
sample.

Genealogy 2 was chosen to test if the model can actually break the population into
the proper related groups and accurately distinguish between individuals from different
demes.

Tables 3.5 and 3.6 summarize the results of running Genealogy 2 with no mutations,
10, 20 and 30 loci, and 2%, 5%, 10% and 20% allele frequencies. Tables 3.7 and 3.8
report the results for mutation rates of 10%, 20% and 30% and for allele frequencies of
2%, 5%, 10%, and 20%. As with Genealogy 1, the model is very successful in recognizing
first degree relationships and unrelated pairs. However, it recognizes second degree

relationships with a varying degree of success, and often rather poorly.
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Figure 3.2: Genealogy 2. The edges represent degree one relationships.



48

Table 3.5: These entries are the results for Genealogy 2 with no mutations and various
values of the number of loci and allele frequencies. As in Table 3.1, “% ... correct” is
the percentage of the model output that is correct. These values indicate the confidence
one can put in the model output.

number allele % relationships % 1°* degree % 27 degree % unrelated

of loci frequencies correct correct correct correct
10 2% 96.61 100.00 55.56 97.55
10 5% 95.38 100.00 33.33 96.86
10 10% 91.08 ~100.00 20.69 97.79
10 20% 84.92 97.14 7.14 96.55
20 2% 99.38 100.00 100.00 99.28
20 5% 98.77 - 100.00 100.00 98.59
20 10% 98.46 100.00 100.00 98.23
20 20% 94.77 97.14 39.13 99.28
30 2% 98.46 100.00 88.89 98.59
30 5% 08.77 100.00 90.00 98.94
30 10% 97.85 97.14 77.78 98.59
30 20% 95.69 100.00 43.75 98.22

Table 3.6: These entries are the results for Genealogy 2 with no mutations and various
values of the number of loci and allele frequencies. As in Table 3.2, “% ... recognized”
indicates the percentage of a particular type of relationship that was correctly identified.

number allele % relationships % 1% degree % 2" degree % unrelated

ofloci frequencies recognized recognized recognized recognized
10 2% 96.61 88.24 41.67 100.00
10 5% 95.38 85.29 25.00 99.64
10 10% 91.08 70.59 50.00 95.34
10 20% 84.92 58.82 25.00 90.32
20 2% 99.38 100.00 83.33 100.00
20 5% 98.77 100.00 66.67 100.00
20 10% 98.46 100.00 58.33 100.00
20 20% 94.77 73.52 75.00 98.21
30 2% 08.46 97.06 66.67 100.00
30 5% 98.77 97.06 75.00 100.00
30 10% 97.85 94.12 58.33 100.00

30 20% 95.69 82.35 58.33 98.92
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Table 3.7: Results for Genealogy 2 with 20 loci and various values of allele frequencies
and mutation rates.

mutation allele % relationships % 1% degree % 2"¢ degree % unrelated
rate frequencies correct correct correct correct
10 2% 94.77 100.00 33.33 97.55
10 5% 93.85 100.00 27.78 97.55
10 10% 93.85 100.00 26.67 96.88
10 20% 89.23 100.00 18.18 97.45
20 2% 90.46 100.00 12.00 96.88
20 5% 88.92 100.00 7.69 95.88
20 10% 87.38 100.00 3.33 95.85
20 20% 87.38 100.00 11.11 96.81
30 2% 86.46 100.00 0.00 94.90
30 5% 87.38 100.00 3.45 95.55
30 10% 88.31 100.00 7.41 95.55
30 20% 84.31 100.00 2.70 94.67

Table 3.8: Results for Genealogy 2 with 20 loci and various values of allele frequencies
and mutation rates.

mutation allele % relationships % 1% degree % 2"* degree % unrelated
rate frequencies  recongnized recognized recognized recognized
10 2% 94.77 70.59 41,67 100.006
10 5% 93.85 61.76 41.67 100.00
10 10% 93.85 64.71 33.33 100.00
10 20% 89.23 50.00 50.00 95.70
20 2% 90.46 35.29 25.00 100.00
20 5% 88.92 23.53 16.67 100.00
20 10% 87.38 17.65 8.33 99.28
20 20% 87.38 20.59 33.33 97.85
30 2% 86.46 5.88 0.00 100.00
30 5% 87.38 11.76 8.33 100.00
30 10% 88.31 17.65 16.67 100.00

30 20% ' 84.31 20.59 8.33 95.34
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3.3 Genealogy 3

Genealogy 3 consists of 10 unrelated individuals. The purpose of running the model
on this gencalogy is to see if it confuses unrelateds with relateds. One advantage of
having such. a sample is that allele frequencies can be accurately estimated, without the
bias that would arise from having related individuals in the sample. The model was run
on Genealogy 3 for 20 loci, allele frequencies of 2%, 5%, 10% and 20%, and no mutations.
All relationships were correctly identified. The model was also run for mutation rates
of 10%, 20% and 30% per allele. In each case, all relationships were again correctly
identified. This in itself is not surprising: The alleles are randomly assigned and the
mutations occur at random. It is expected that mutations would have no effect on the
results of the model for Genealogy 3. In fact, the model was ran with 20 loci, 20% allele
frequency and a mutation rate of 50%. Again, the model was correct in 100% of the

cases.

3.4 Genealogies 4, 5 and 6

Genealogy 4 differs significantly from Genealogies 1, 2 and 3. It includes 10 individ-
uals, 8 of which are descended from two founderé (see Figure 3.3). The population is
highly inbred. It is difficult to talk about “degrees of relationship” in the presence of
inbreeding,.

This genecalogy was chosen to see how the model would react to a small inbred
population. Under such circumstances, other factors might be available to help establish
relationships. Such factors include behavior and location or range. Genealogy 4 would

likely represent a sample taken from a single site. In Chapter 4 it will be argued that the
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Figure 3.3: Genealogy 4. The edges represent degree one relationships.

model should report all pairs of individuals as degree one relatives, with the exception
of 1 and 2. Table 3.9 presents the percentage of thése"rélationships correctly. recognized
for various mutation rates and allele frequencies.

Genealogy 5 includes the individuals of Genealogy 4 along with 10 additional individ-
uals each unrelated to any others in the sample population. This genealogy was chosed
to see if the added individuals have any effect on the model output. Genealogy 6 includes
the individuals of Genealogy 4 along with 20 unrelateds. This was chosen to see if the
results the model gives with the above two genealogies are refined. Tables 3.10 and 3.11

present the summaries of the model output for Genealogies 5 and 6, respectively.
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Table 3.9: The percentage of degree one relationships recognized by the model for Ge-
nealogy 4 with 20 loci and various values of allele frequencies and mutation rates.

mutation rate allele frequencies % 1°° degrees recoginized

0 2% 4.55
0 5% 4.55
0 10% 4.55
0 20% 4.55
10 2% 2.27
10 5% 2.27
10 10% ' 4.55
10 20% 4.55
20 2% 2.27
20 5% 0.00
20 10% 2.27
20 20% 4.55
30 2% 0.00
30 5% 0.00
30 10% 0.00
30 20% 2.27

Table 3.10: The percentage of degree one relationships recognized by the model and
the percentage of unrelateds said to be related for Genealogy 5 with 20 loci and various
values of allele frequencies and mutation rates.

mutation allele % 1% degrees % unrelated said
rate frequencies % recognized  to be degree 1
0 2% 40.91 0.00
0 5% 45.45 0.00
0 10% 43.18 0.33
0 20% 43.456 3.67
10 2% 18.18 0.00
10 5% 13.64 0.00
10 10% 13.64 0.66

10 20% 20.00 2.00
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Table 3.11: The percentage of degree one relationships recognized by the model and
the percentage of unrelateds said to be related for Genealogy 6 with 20 loci and various
values of allele frequencies and mutation rates.

mutation allele % 1% degrees % unrelated said
rate frequencies % recognized  to be degree 1
0 2% 70.45 0.00
0 5% 63.64 0.25
0 10% 68.18 1.25
0 20% 75.00 3.75
10 2% 29.55 0.00
10 5% 25.00 0.00
10 10% 27.27 0.50

10 20% 34.09 3.13




CHAPTER 4

Discussion

In this chapter, the strengths and weaknesses of the model are discussed. In addition,
certain information (namely, age structure) is added to the knowledge about the sample

population and some of the results of Chapter 3 are presented graphically.

4.1 Genealogy 1

As revealed in Tables 3.1 and 3.3, a great deal of confidence can be put in the model
when it says two individuals are first degree relatives or when it says they are unrelated.
One can put 95% confidence in a relationship said to be first degree, provided allele
frequencies are less than 20% when 20 or 30 loci are used, or less than 10% when 10
loci are used. With mutations present, the degree of confidence is even greater. As
shown in Table 3.3, there is more than a 96% confidence in “first degree relationship”
output in every case tested. This is because the mutations have shifted pairs that
may have been bordering on first and second degree to second degree. Unfortunately,
comparing Table 3.2 and 3.4, one sees that the mutations also lessen the number of
degree one relationships that are recognized. With or without mutations, the model is
very successful with unrelated pairs. Irom Tables 3.1 and 3.3, one can put over 97%
confidence in the output when it indicates that a pair is unrelated, from Tables 3.2 and
3.4, the model is over 94% accurate in recognizing unrelated pairs in all cases tested,

except one (10 loci, 20% allele frequencies and no mutations),

54
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The model is much less successful with second degree relationships. From Table 3.1,
one can see that as the number of loci increase or as the allele frequencies decrease (and
therefore the number of alleles increases), the confidence in degree two output increases.
However, there is never 95% confidence in this output, although a few cases reveal 90%
confidence. Things are even worse in the presence of mutations (see Table 3.3). In fact,
in the cases tested, one can never even put 50% confidence in the degree two output.
This is primarily because the model confuses degree one relationships for degree two
relationships. This is also why a smaller percentage of degree one relationships are
recognized when mutations are present (compare Tables 3.2 and 3.4). The recognition
rate of degree two relationships is also rather poor, In the absence of mutation, the
average rate of recognition in the cases tested is around 60%. This rate is much less
when mutations are present, averaging around 40%.

One source of error, is the determination of allele frequencies. The frequencies are
estimated assuming the population sample consists of unrelateds. These frequencies are
then used to estimate relatedness. The result is that allele frequencies are overestimated
and in turn, degrees of relationship are underestimated. Attempts were made to modify
the model by adjusting allele frequencies based on average relatedness, re-estimating
relatedness, and iterating this process. However, they proved unsuccessful.

Therefore, in the reconstruction of genealogies, only the degree one relationships will
be directly incorporated. In each case, this will leave certain “gaps” in the genealogy,
due to the general underestimation of degrees of relationship. At other times, false re-

lationships will appear. An informal attempt will be made to detect the false missing
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relationships using the degree two relationships, information on “degree infinity” rela-
tionships (unrelateds) and, if available, age structure.

Of all the model runs.using Genealogy 1, the best results are obtained with the largest
number of loci (30) and the smallest allele frequencies (2% for each allele). Figure 4.1
illustrates the results for this run with no mutations. In fact, this is precisely Genealogy 1
with the exception of the fact that individuals 28 and 29 are siblings. The model reports
these as degree two relatives. It also says that 13 and 14 are unrelated. With the degree
one relationships given for 13, 14, 28 and 29, either 13 and 14 must be siblings, or 28 and
29 must be siblings (assuming no inbreeding). Even in the absence of knowledge of the
age structure, it would be suspected that 28 and 29 are siblings and therefore are degree
one relatives. If there were a knowledge of the age structure, that is if it were known
that individuals 13 and 14 both occurred in the generation preceding 28 and 29, it would
have to be the case, accepting the degree one relationships, that 28 and 29 are siblings.
In this case, Genealogy 1 is perfectly reproduced. Each additional error of the model,
each of which involves a confusion of degree two and unrelateds, can also be detected
from Figure 4.1. A similar analysis will hold for the runs with: 30 loci, allele frequencies
of 5% each; 20 loci, allele frequencies of 2% each; and 20 loci, allele frequencies of 5%
each. In each case, a single degree one relationship is omitted and can be inferred.

Figure 4.2 shows the results for Genealogy 1 with 20 loci and allele frequencies of
10% for each allele. Again, only the first degree relationships are shown. As in the above
run, a pair of siblings, individuals 26 and 27, was missed and the relationship was said
to be degree two. As above, the relationship can be inferred. A problem a bit more

difficult to resolve, is the alleged degree one relationship between individuals 20 and 33.
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Figure 4,1: Degree one relationships as determined by the model using Genealogy 1, 30
loci and 2% allele frequencies. This is precisely Genealogy ! with the exception of the
fact that 28 and 29 are siblings, In this run, they were reported as degree two relatives.
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Figure 4.2: Degree one relationships as determined by the model using Genealogy 1, 20
loci and 10% allele frequencies.
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If there is knowledge of age structure, the problem can be resolved. Since 20 appears two
generations earlier than 30, it is unlikely that these two could be degree one relatives.
In the absence of this information, it might be possible that 20 and 30 are siblings with
33 as one parent and the other parent not occurring in the sample. However, this would
contradict several alleged unrelated pairs. For example, this would require 31 to be a
degree two relative (grandparent) of both 20 and 30. The model says that 31 is not
related to either of these. It would also require a degree two relationship between 20 and
21, which the model does not indicate. Nonetheless, if the degree two relationships do
not carry a great deal of confidence, certainly the best way to resolve the dilemma. is from
the age structure. Again, the model is very successful in reconstructing the genealogy,
although somewhat less successful than in the above discussed runs.

Pushing the model a bit, Figure 4.3 illustrates the degree one results in the weakest
run of Genealogy 1 not involving mutations. The model used 10 loci with allele frequen-
cies of 20% for each allele. This corresponds to a total of at most 50 traits detected
in the population. As can be seen, several degree one relationships are missing, three
degree two relationships were mistaken for degree one, a third degree relationship was
mistaken for a first degree and one pair that was actually unrelated, was said to be in a
first degree relationship. In fact, as an artifact of the small number of alleles present in
the population, several relationships were overestimated (see Tables 3.1 and 3.2). The
model did a fair job of breaking the sample into related groups. Only one individual
(17) was pulled into a group to u.rhich it was not related, although two of the related
groups were fragmented into smaller related groups. The presence of the knowledge of

age structure in this case would be of little help, although some of the erroneous degree
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Figure 4.3: Degree one relationships as determined by the model using Genealogy 1, 10
loci and 20% allele frequencies.
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one relationships might be detected. It appears that the model is not very successful
with genealogy reconstruction with the limited data used as input in this run.

The effect of mutations is now considered. The programs described in Chapter 2 are
set up in such a way that when a mutation (or laboratory error) occurs, it exchanges one
allele at the given locus for another (not necessarily different) allele at that locus. This
means that if there are a large number of alleles at a particular locus, mutations are not
likely to make two individuals appear more closely related. However, if there are only a
few alleles at 2 locus, it is quite possible that mutations could make individuals appear
more closely related than they actually are. This trend can be observed with Genealogy
1 in Tables 3.1-3.4. This anomaly will have quite an effect on the output.

Figure 4.4 gives the results for Genealogy 1 with 20 loci, 2% frequencies for each al-
lele and a mutation rate of 10% per allele. Since with small allele frequencies, mutations
make individuals appear more distantly related, it is not surprising that each time the
model indicates a degree one relationship, it is correct. Several of the degree two rela-
tionships indicated in the model output are verified from the degree one relationships.
However, some are not. These are indicated with dotted lines in Figure 4.4. Including
these corrections, almost gives the correct topology of the genealogy, although some of
the distances are not accurate. Again, some knowledge of the age structure would be
very helpful here. If some confidence is put in the second degree relationships, the model
is quite successful in this case. Figure 4.5 gives the results for 2% allele frequencies, 20
loci and a 20% mutation rate. Including the degree two relationships introduces two
topological errors (one involving 1, 20 and 30 and the other involving 10, 24 and 32).

Again, the model is reasonably accurate, especially if age structure data is available.
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Figure 4.4: Degree one and degree two relationships as determined by the model using
Genealogy 1, 20 loci, 2% allele frequencies and a 10% mutation rate. The solid lines
represent degee one relationshps and the dotted lines represent the degree two output
that is not explained by degree one relationships.
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Figure 4.5: Degree one and degree two relationships as determined by the model using
Genealogy 1, 20 loci, 2% allele frequencies and a.20%. mutation rate. The solid lines
represent degee one relationshps and the dotted lines represent the degree two output
that is not explained by degree one relationships.
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These results indicate that with small allele frequencies, it is still quite possible to re-
construct genealogies, even with a very high mutation rate (or laboratory error). Similar
results, although somewhat less precise, are also obtained from the runs where a 5%
allele frequency is used.

The model becomes much less reliable with a 20% mutation rate, as the allele fre-
quencies become larger. Figures 4.6 and 4.7 show the results for Genealogy 1 with 20
loci, 10% allele frequencies and a 20% mutation rate. Figure 4.6 includes the first degree
relations only. The model is rather poor at recognizing these relationships, although a
great deal of confidence can be put in a “first degree relationship” output. In this case,
the second degree relationships are of little help (see Figure 4.7). All of the actual first
degree relationships were said to be either first degreé or second degree. However, five
pairs of unrelateds were said to be degree two relatives. Again, this is a combination
of the high mutation rate and the few number of alleles allowable at a particular locus.
Adding the second degree relationships to the first degree, give some idea of the structure
of the genealogy. However, the extra relationships effectively mask the true intricacies of
the genealogy. It seems that the model is not very successful at genealogy reconstruction

under these conditions of high mutation rates and high allele frequencies.

4.2 Genealogy 2

As with Genealogy 1, a great deal of confidence can be put in the model when it says
two individuals are first degree relatives or are unrelated when using Genealogy 2 (see
Tables 3.5 and 3.7). In the absence of mutations, there is at least a 97% confidence in

degree one output. With mutations this confidence rises to 100%. Without mutations,
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Figure 4.6: Degree one relationships as determined by the model using Genealogy 1, 20
loci, 10% allele frequencies and a 20% mutation rate.
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Figure 4.7: Degree two relationships as deterimined by the model using Genealogy 1, 20
loci, 10% allele frequencies and a 20% mutation rate.
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the percentage of actual degree one relationships that are recognized is comparable to the
results for Genealogy 1 (in fact, they are a bit better), With mutations, the percentage
of degree one relatives recognized is a bit less than it was for Genealogy 1 (compare
Tables 3.4 and 3.8). The model is very successful with unrelated pairs. One can put 95%
confiderce in an “unrelated” output in all tested cases except for two (both of which
involve mutation rates of 30%, but there is still a 94% confidence in these worst cases,
see Table 3.7). From Tables 3.6 and 3.8, one can see that the model recognizes over 95%
of the unrelated pairs, except in one case ( in which there are the fewest number of loci
[10] and the fewest number of alleles per locus [5] ).

The model is less successful with the second degree relationships. Table 3.5 reveals
that both the level of confidence and the percentage of recognition decrease as allele
frequencies increase. There is occasionally a high degree of confidence in the degree
two output, but quite often the degree of confidence is less than 95%. However, in
each case the confidence in degree two output for Genealogy 2 was either comparable
to or better than the analogous output for Genealogy 1 (compare Tables 3.1 and 3.5)
in the absence of mutations. The percentage of degree two relationships recognized
for Genealogy 2 are also comparable to the results for Genealogy 1 in the absence of
mutations, although the deviation from a general trend is a bit larger here (compare
Tables 3.2 and 3.6). In general, with mutations present, the level of confidence in degree
two output drops significantly (except in the cases of 10% mutation rates and 10%
and 20% allele frequencics, compare Tables 3.5 and 3.7). In fact, the highest level of

confidence in the cases tested is 33%. One sees a similar trend when comparing the
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percentage of degree two relationships recognized with and without mutations (compare
Tables 3.6 and 3.8).

Again, a source of error is the determination of allele frequencies, due to the sam-
pling of related individuals. However, this problem is somewhat alleviated by the fact
that Genealogy 2 consists of several unrelated groups. The bias introduced with the
relatedness within groups is somewhat balanced by the nonrelatedness between groups.

Figure 4.8 presents the model output for degree one relationships for Genealogy 2
when ran with 30 loci and allele frequencies of 2%. All degree one relationships are
correctly identified except for one (individuals 25 and 26 are siblings). As in the first
discussed run of Genealogy 1, the sibling relationship between 25 and 26 can be inferred
from either the degree two relationships or from the age structure. A similar analysis
holds for the case of 30 loci and 5% allele frequencies. Interestingly, the model is a bit
more successful when there are only 20 loci. With 20 loci and allele frequencies of 2%,
5% and 10 %, all first degree relationships are identified and there is 100% confidence in
the “first degree” output. This means that the genealogy is perfectly reconstructed in
these cases.

The run for Genealogy 2 with 10 loci and 2% allele frequencies is presented in Figure
4.9. Again, the genealogy is reconstructed from the degree one relationships, with the
exception of four pairs of siblings and again, this relationship can be inferred. These
results seem to indicate that, ever with a small number of loci (10), if the traits be-
ing scored are rare enough (2% allele frequency), then the genealogy can be correctly

reconstructed.
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Figure 4.8: Degree one relationships as determined by the model using Genealogy 2, 30
loci and 2% allele frequencies.
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Figure 4.9: Degree one relationships as determined by the model using Genealogy 2, 10
loci and 2% allele frequencies.
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Figure 4.10 illustrates the degree one results for Genealogy 2 with 20 loci and allele
frequencies of 20%. One false degree one relationship is present (individuals 9 and 10 are
actually degree two relatives). However, no false connections have been made between
unrelated groups. The population has been broken into related groups, although the
groups are not as large as they should be. Including the degree two relationships starts

to cloud the structure. It seems that the model is only marginally successful in this case.

Tables 3.7 and 3.8 give the results for Genealogy 2 when mutations are present.
Similar to Genealogy 1, a great deal of confidence can be put in degree one output. In
fact, everytime the model said a relationship was degree one, with mutations present, it
was correct. The percent of degree one relationships recognized was much less, as was
the case in Genealogy 1. In fact, the percentages are for the most part, comparable on
this point between the two genealogies, although Genealogy 1 does do better in general
with these. ‘

Figure 4.11 gives the degree one output of the model for Genealogy 2 with 20 loci,
2% allele frequencies, and a 10% mutation rate. Several of the degree two relationships
are also given as dotted lines. The topology is correct except for the 11-12-21 triangle
and the 13-14-22 triangle. Since 11 and 12 are each degree one relatives of both 3 and
4, it must be (assuming no inbreeding) that cither 3 and 4 are siblings or 11 and 12
are siblings. Since 11 and 12 are reported to be degree two relatives and 3 and 4 are
reported to be unrelated, it is more likely that 11 and 12 are the pair of siblings (this
same analysis was carried out above). Also, if 11 and 12 are siblings, this resolves the

degree two relationship between 12 and 21. This dilemma can be similarly resolved with
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Figure 4.10: Degree one relationships as determined by the model using Genealogy 2, 20
loei and 20% allele frequencies.
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Figure 4.11: Degree one and degree two relationships as determined by the model using
Genealogy 2, 20 loci, 2% allele frequencies and a 10% mutation rate. The solid lines
represent degree one and the dotted lines represent some of the degree two output.
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age structure information. The 13-14-22 triangle is a bit more difficult to resolve, One
option, is that the three are siblings. This means that the relationship between 6 and
22 (reported as degree two) was underestimated, and the relationship between 5 and 22
(reported as unrelated) was grossly underestimated. This is possible, although unlikely.
Also, the possibility could quickly be ruled out in the presence of age structure . Another
option is that 22 is the niece or nephew of 13 and 14 and that the parent of 22, a sibling
of 13 and 14, is not present in the sample. This possibility leaves all reported degrees of
relationship in tact and also, age structure would not be of any help in ruling this out. If
there is not a great deal of confidence in the reported degree two relationships, another
possibility is that 13 and 14 are siblings and one of them is a parent of 22 and the other
is an aunt or uncle. Simply from the degrees of relationship, it is impossible to tell which
is the parent and which the aunt or uncle, however. Again, age structure is not a great
deal of help with this particular point. However, if it is known that individual 15 occurs
in the generation before 22 and their relationship is the first degree, then 15 must be
a parent of 22. One other piece of information that is easily obtained but has not yet
been discussed could be useful at this point. Since the sex of a pair of parents must be
different, if 15 is one parent of 22, the other parent must certainly be of the opposite
sex. Again, however, this may not completely solve the problem. If it is suspected
that 15 is one parent and either 13 or 14 is the other, closer scrutiny of the raw data
might be reveilling, In the absence of mutation, every dominant trait that an individual
expresses must be inherited from one of the parents. Searching the phenotypes of the
four individuals concerned with this in mind, might provide additional insight. However,

mutations have not been ruled out in this case. Another approach might involve the
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use of rare or “unique” alleles. See the “Discussion” section of this chapter for more
on the use of unique markers. This example illustrates the difficulty involved in the
type of analysis being attempted. Quite often, the simple data of pairwise degrees of
relationship will be insufficient to accurately reconstruct the true genealogy. The results
of this run are similar to the results for 20 loci, 2% allele frequencies and a 20% mutation
rate and for 20 loci, 5% allele frequencies and a 10% mutation rate, although less degree
one relationships were recognized in these runs.

As above, high mutation rates make the relationships seem more distant. Figure 4.12
gives the results of the model when run with Genealogy 2, 20 loci, 10% allele frequencies
and a 30% mutation rate. Using the first and second degree relationships gives the
approximate shape of the genealogy. However, as above, there is a problem with a 9-10-
21 triangle. Since 10 and 21 are said to be (with a good deal of confidence) degree one
relatives, the dilemma is more easily resolved this time. The mutations have had another
severe effect. Three pairs of first degree relatives were said to be unrelated (6-14, 15-16,
and 23-24). It seems that the model is weak in this case. Its performance is even less

accurate with larger allele frequencies.

4.3 Genealogy 3

Recall that Genealogy 3 is a population of 10 unrelated individuals. The model
correctly identified each relationship in all tested cases of loci number, allele frequencies
and mutation rates. This is an important point. Even though the population sample
was small, the structure was correctly identified. The source of error identified above,

namely poor estimates of allele frequencies due to relatedness in the sample, is not a
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Figure 4.12: Degree one and degree two relationships as determined by the model using
Genealogy 2, 20 loci, 10% allele frequencies and a 30% mutation rate, The solid lines
represent degree one and the dotted lines represent some of the degree two ‘output that

is not explained by degree one relationships.
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problem in this case. This indicates that the presence of unrelateds in a sample is
desirable, They enhance the estimates of allele frequencies and help refine the degree of
relationship estimates between related individuals. See the “Discussion” section below

for more details.

4.4 Genealogies 4, 5 and 6

Genealogy 4 involves a high degree of inbreeding. The results for this model are
presented in a slightly different form. Since the model only tests for “degree one”,
“degree two”, and “degree 3 or higher” relationships, it will be difficult to reconcile the
output with the actual relationships. To shed some light on this, consider the so called

coefficient of kinship, Fyx, between two individuals J and K. This is defined as

Frg =Y, (%)NH (4.1)

where N is the number of steps in a path from J to a common ancestor and back to K,
and the summation is over all such paths [Smith, 1989]. This formula assumes that the
common ancestors are not inbred and are unrelated. In the absence of inbreeding, the J
and K are n-degree relatives where

— log(QFJK) - 1 log Fyx (4 2)

n = —logy(2Fyk) = Tog 2 Tog 2

Since Genealogy 4 involves inbreeding and the model only outputs degrees of relationship,
define the degree of relationship, n, between two inbred individuals by equation (4.2).

Table 4.1 gives the coefficients of relatedness for the pairs of individuals of Genealogy 4
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Table 4.1: ‘The coefficients of kinship for the pairs of individuals in Genealogy 4 calculated
from equation (4.1).

1 2 3 4 5 6 7 8 g 10

1 - 0 1/4 1j4 1/4 1/4 1/4 1/4 1/4 1/4
2 0 - 1/4 1/4 1/4 1/4 1/4 1/4 14 1/4
3 1/4 1/4 - 1/4 1/4 1/4 3/8 3/8 1/4 1/4
4 1/4 1/4 14 - 1/4 1/4 3/8 3/8 1/4 1/4
5 1/4 1/4 1/4 14 - 1/4 1/4 1/4 1/4  1/4
6 1/4 1/4 1/4 1/4 1/4 - 1/4 1/4 1/4 3/8
7 1/4 1/4 3/8 3/8 1/4 1/4 -  3/8 7/16 9/32
8 1/4 1/4 3/8 3/8 1/4 1/4 3/8 - 7/16 9/32
9 1/4 1/4 1/4 1/4 1/4 1/4 7/16 7/16 -  3/8
10 1/4 1/4 1/4 1/4 1/4 3/8 9/32 9/32 3/8 -

and Table 4.2 gives the degrees of relationship as defined above. In every case except
for the founders, 1 and 2, the degree of relationship between pairs is one or greater. So,
the best possible output from the model woﬁld be a “degree one” output for each of
these relationships. Certain relationships are particularly close, for example between 7
and 9, and between 8 and 9, and even if the model has trouble accurately recognizing
the other relationships, it should recognize these.

Table 3.9 presents a brief summary of the results of running Genealogy 4 in the model
with 20 loci and various allele frequencies and mutation rates as input. In each run, either
none, one, or two degree-one relationships were recégnized. In the absence of mutations,
two degree-one relationships were recognized and in each case these were the pair 7 and
9 and the pair 8 and 9. It might initially seem surprising that the model performs so
poorly. The reason for this lies in the fact that allele frequencies are very badly estimated.
The estimates are calculated assuming the individuals are unrelated. The only pair of

unrelated individuals in the sample is the pair 1 and 2. This bias is reflected in the fact
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Table 4.2: The degrees of relationship for the pairs of individuals in Genealogy 4 which
are calculated using equation (4.2).

1 2 3 4 5 6 7 8 9 10
1 - o 1 1 1 1 1 1 1 1
2 1 - 1 1 1 1 1 1 1 1
3 1 1 - 1 1 1 0.415 0415 1 1
4 1 1 1 - 1 1 0.415 0.415 1 1
5 1 1 1 1 - 1 1 1 1 1
6 1 1 1 1 1 - 1 1 1 0.415
7 1 1 0415 0415 1 1 - 0.415 0.193 0.830
8 1 1 0415 0415 1 1 0.415 - 0.193 0.830
9 1 1 1 1 1 1 0.193 0.193 - 0.415
10 1 1 1 1 1 0.415 0.830 0.830 0.415 -

that only a small percentage of the pairs are correctly given their degree of relationship.
As discussed above, relatedness has the effect of making individuals appear less closely
related. It follows that the output would be greatly improved if the allele frequencies
could be better estimated. .

Genealogy b is an attempt to do just that. Genealogy 5, recall, includes all the
individuals of Genealogy 4 plus 10 new individuals unrelated to any others in the sample.
It is expected that the presence of this new outgroup will dramatically improve allele
frequency estimates. As Table 3.10 reveals, the percentage of first degree relationships
recognized, increases roughly 10-fold over the results from Genealogy 4. The effects of
mutations seem rather severe, with a 10% mutation rate cutting the percentage of degree
one relationships recognized in half. One further statistic that can be associated with
the output is the percentage of pairs of unrelateds mistaken for related pairs. This error
occurs a small percentage of the time (see Table 3.10), mostly when the allele frequencies

are relatively large. Again, however, the true degree of relationship between individuals
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1 through 10 is not well recognized by the model, with the average recognition in the
absence of mutations at around 43%.

Genealogy 6 consists of all members of Genealogy 5 along with an additional group
of 10 individuals unrelated to all others in the sample population. The percentage of
recognition of degree one relatives is much better than with Genealogy 5, at an average of
69% in the absence of mutations (see Table 3.11). Again, a mutation rate of 10% roughly
cuts these values in half. It is apparent, however, that a large number of unrelateds would
have to be present in the sample for the percentage of degree one relationships recognized
to reach a substantial level (say 95%). This is due to the fact that any allele present in
individuals 3 through 10 is derived either from individual 1 or 2, or is from a mutation.
Frequency estimates will be large as long as these 10 individuals comprise a significant
percentage of the sample population.

One interesting fact about Genealogy 4 is the following. Even if the model were to
give the optimal output (all relationships first degree except for the pair 1 and 2), then it
is still impossible to reconstruct the true genealogy. The output would indicate a closely
related population, but the details of the structure are completely hidden. The presence
of age structure would be a bit helpful, but the number of possible genealogies would
still be staggering.

It seems that the model is at its worst when dealing with Genealogies 4, 5 and 6. That
is, the model is least effective when dealing with a small population of closely related
individuals. This is precisely the time, however, that other methods might be much more
useful. Testing individuals pairwise to see if they are possible parents of other individuals

in the sample or using unique markers to trace relationships both might shed light on the
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true genealogical structure. Unique markers might be particularly useful in an inbred
population. The use of unique markers in the absence of inbreeding is discussed in the

next section.

4.5 Discussion

In this section, the data presented above are summarized and conclusions drawn.
Strengths and limitations of the model are discussed.

The general trend threughout the model is that, in the absence of mutations, the
number of alleles present in the population is directly proportional to the accuracy of
the output of the model. In fact, if alleles were “unique”, that is if the allele is present
in only one lineage and the probability of it occuring in other lineages is zero, then it is
expected that the model would give perfect output. In this case, unrelated individuals
would share none of these markers. The use of unique markers in pedigree reconstruction
has been explored in Wooten and Gardner [submitted manuscript]. Unique markers are
unambiguous indicators of relatedness. The continued discovery of highly polymorphic
sequences and the use of gene amplification techniques for both fragment detection and
direct sequencing has vastly increased the ability to identify large numbers of individual-
specific markers [Horn et al., 1989 and Jeffreys et al. 1990]. If a large enough sample of
unique markers could be identified, it might be possible to trace relationships over many
generations. A question of interest is “How many unique markers must an individual
possess for there to be a 1 — « probability that a degree n relative also possesses one

1

of the markers?” For any given unique marker, the probability of sharing is (i)n and

the probabilty of not sharing is 1 - (%)n If an individual possesses z unique markers,
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the probability that none are shared with an »n degree relative is {1 - (%) }m, and the
probability that at least one is shared is 1 — {1 - (%)}m So for there to be a 1 — a

probability of shared markers, it must be that

or
o= log oél .
log(1 - (3)")
For » = 1 and « = 0.05, one gets that @ = 4.3. That is, an individual must possess
5 unique markers for one to have 95% confidence that thié individual shares a unique
marker with a degree one relative. For n = 2 and & = 0.05, one gets that z = 10.4. With
n =3 and a = 0.05, one has z = 22.4 and for n = 4 and & = 0.05, one needs 2 = 46.4
unique markers. So it seems even with unique markers, it is difficult to carry pairwise
determination of relationships very far (more than 2 or 3 steps) unless there is a rather
large number of such markers,

The model almost always performed better when allele frequencies were low. This
point was suggested in Chapter 1 and has been explored by Lynch [1988]. This suggests
that relationships are rather accurately identified when allele frequencies are less than
5% or so. The degree one relationships are particularly well recognized. When dealing
with real world data, it is easy to check the trait or band frequencies and to derive the
associated allele frequencies from these. The genealogies above seem to indicate that if
the observed allele frequencies are low, then one can puft a fairly high degree of confidence

in the output of the model.
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With relatedness within a sample, estimations of allele frequencies will be high. This
can be partially remedied by adding an “outgroup”. The model was most successful
with Genealogy 3 because there was no bias due to relatedness in the estimation of
allele frequencies. The model was least successful with Genealogy 4 because of the
very high bias in these estimates. The level of success was also reasonably high with
Genealogies 1 and 2, The presence of related individuals, of course, prodﬁced a bias in
frequency estimates; however in each population there was an absence of relationships
between several groups. In particular, Genealogy 1 contains five individuals unrelated
to all others in the sample. The presence of this division into related groups (and
also the presence of unrelateds in Genealogy 1) helps compensate somewhat for the
bias in frequency estimations. This would be especially true when the groups are of
similar sizes. This also explains the lack of success with Genealogies 4, 5 and 6. As
more unrelateds are introduced into the sample, allele frequency estimates become more
accurate and the degrees of relatedness becomes more apparent. The high degree of
relatedness between the 10 individuals of Genealogy 4 implies that many unrelateds will
be needed to compensate for this bias. One interesting result from Genealogies 4, 5 and 6
is that the true aliele frequencies used to generate the data seemed to have little effect on
the effectiveness of the model when dealing with individuals 1 through 10 (see Tables 3.9,
3.10 and 3.11). This is due to the fact that the frequencies of alleles used io determine
relatedness in this group were estimated based heavily on their presence in this group.
That is, the estimates of allele frequencies were so dominated by the inbred group that
alleles which would have been rare in a noninbred population, appeared rather common

in this population. Again, this is a point where unique markers could be helpful.



84

Another trend that the model seems to follow is that it is more accurate with a larger
number of loci. This is not true in general, instead holds most dramatically when allele
frequencies are large. The model is set up in such a way (see Chapter 2) that if m loci
are used, each individual will display between m and 2m of the possible traits. This
indicates that when higher frequency markers are used in genealogical reconstruction,
more markers (data) must be employed.

Under the best circumstances tested, the model is quite accurate with second degree
relationships. IHowever, the greatest confidence is in the degree one output. In an ideal
situation, all necessary degree one relatives would be present and these could be used
to check the degree two output. Advantage was taken of the fact that all intermediate
individuals were present between two relateds in the above discussed genéalogies. In
the absence of the relevant degree one relatives, if two individuals are said to be second
degree relatives, it can only be assumed that the output is correct and the relatives
linking these two together are not present in the sample. This could be a problem when
little confidence is put in the degree two output.

One very strong point of the model is its behavior in the presence of “mutations”. The
situation written into the model is to have a certain percentage of the alleles randomly
changed to other alleles. This could correspond not only to a mutation, but to an error
in scoring the raw data in the laboratory. The model is adversely affected by such action,
although in the better cases that were tested, still fairly accurate when faced with the
astronomical mutation rates of 10% or 20% per allele. Certainly no natural population
could have such a mutation rate, and it is hoped that no laboratory could be so poor at

recording datal
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4.6 Conclusion

The model proposed in this thesis, namely genealogical reconstruction within a popu-
lation using pairwise distances determined with a maximum likelihood algorithm, seems

quite useful under a certain set of circumstances. The model is strong when

1. it is applied to a large population consistiﬁg of several unrlelated groups or having

a largé number of individuals unrelated to all other members of the sample,

2. the number of markers used as raw data are low in frequency, with associated allele

frequencies of around 5% or less,

3. there are a sufficient number of pairs of degree one relatives in the sample to piece

together more distant relationships, and when

4. the rate of mutation or laboratory error is small (“small” might be taken to be less

than 10%).
The model is less successful when

1. it is applied to small populations which have a high average degree of relatedness

or a high level of inbreeding,
2. the markers used as raw data are few in number and high in frequency,

3. the population only contains distantly related pairs and the genealogy must be

reconstructed without the intermediate relatives, and when

4. there is a very high rate of mutation or laboratory error.
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When applied to the appropriate situation, this model should perform quite satisfac-
torally and provide the population geneticist, conservationist, ecologist, or field biologist

with valuable information that would otherwise be unavailable.
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APPENDIX

This appendix includes listings of the fortran programs FREQDAT.FOR, GEN-
DAT.FOR, GENOME.FOR, RECONSTR.FOR and MATRIX.FOR. The listings are
the versions of the programs which were run in Microsoft Fortran on an IBM compatible

personal computer.
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GENDAT.FOR

GENDAT.FOR

10

200

300

400

THIS PROGRAM ALLOWS FOR THE INPUT OF DATA THAT
DESCRIBES A GENEALOGY FOR A CERTAIN POPULATION
OF SIZE N. IT I8 THE ADJACENCY MATRIX FOR THE
PARENT TO OFFSPRING DIRECTED GRAPH.

DIMENSION IG(50,50)
CHARACTER*20 GENEALFILE

WRITE(*,*) 'THIE PROGRAM IS FOR THE INPUT OF THE’

WRITE(*,*)  ADJACENCY MATRIX FOR THE’

WRITE(*, *) / PARENT-OFFSPRING DIRECTED GRAPH,’

WRITE (%, %)/ *

WRITE(%,#)/IN WHAT FILE WILL THE GENEALOGY BE STORED?’
READ (*,10) GENEALFILE

FORMAT (A9

OPEN (UNIT=1, FILE = GENEALFILE, STATUS=’OLD’)

WRITE *,*;' ¢ _

WRITE(*, %) WHAT IS THE SIZE OF THE POPULATION?’
READ (%, *) N

WRITE(1, *)N

WRITE(*,*) 'WHICH EDGES DO YOU WANT TO INCLUDE?'
WRITE *,*g'INPUT WG, 0" TO ENDY

WRITE(*,*) ' INPUT PARENT#, OFFSPRING#’
READ(*,%)J,T

IF{I.EQ.O) GO TO 300

16(1,J)=1

GOTO 200

DO 400 I=1,N

DO 400 J=1,N

WRITE (1, *}IG(I, )

CONTINUE

END
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FREQDAT.FOR

GENDAT. FOR

i¢

200

300

400

THIS PROGRAM ALLOWS FOR THE INPUT OF DATA THAT
DESCRIBES A GENEALOGY FOR A CERTAIN POPULATION
OF S8IZE N. IT IS THE ADJACENCY MATRIX FOR THE
PARENT TO OFFSPRING DIRECTED GRAPH.

DIMENSION IG(50,50)
CHARACTER*20 GENEALFILE

WRITE(*,*) /THIS PROGRAM IS8 FOR THE INPUT OF THE'
WRITE(*, %} ADJACENCY MATRIX FOR THE'

WRITE(*, *}  PARENT~-OFFSPRING DIRECTED GRAPH,‘

WRITE (%, %)/ / o

WRITE (%, %) IN WHAT FILE WILL THE GENEALOGY BE STORED?’
READ (%, 10) GENEALFILE

FORMAT (A9)

OPEN (UNIT=1, FILE = GENEALFILE, STATUS='OLD‘)
WRITE(*,*}' !
WRITE(*,*) 'WHAT IS THE $IZE OF THE POPULATION?‘
READ (%, %) N

WRITE(1,*)N :

WRITE(*,*) 'WHICH EDGES DO YOU WANT TO INCLUDE?!
WRITE *,*;’INPUT 0, 0" TO END’

WRITE (%, ) ' INPUT PARENT#, OFFSPRING#
READ (%, %)J,I

IFZI.EQ.O) GO TO 300

IG(I,J)=1

GOTO 200

DO 400 T=1,N

DO 400 Jml,N

WRITE(1,*)IG(I,J)

CONTINUE

END

-~
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GENOME.FOR

GENCME. FOR

THIS PROGRAM USES THE GENEALOGY IN FILE "GENEALOGY1,DATY AND
THE ALLELE FREQUENCIES IN "FREQUENCY1.DAT" TQ RANDOMLY GENERATE
GENOMES FOR THE ANCESTORS IN THE GENEALOGY AND TO BREED THEM
ACCORDING TO THE GENEALOGY AND PRODUCE GENOMES FOR THEIR
DECENDANTS, THE GENOMIC DATA IS THEN STORED IN A FILE.

THE PROGRAM ALSO ALLOWS A CERTAIN AMOUNT OF MUTATIONS, SOME
PERCENTAGE QF OF THE TIME (MUT%) AN ALLELE AT A LOCUS IS8
RANDOMLY REPLACED WITH ANOTHER ALLELE AT THAT LOCUS.

DIMENSION IGEN(50,100),IF({50),1G3({50,50) A (50,50}
CHARACTER#*20 GENEALFILE, FREQFILE, GENOMEFILE

IGENE ) IS THE GENOTYPE MATRIX WITH ENTRIES (INDIVIDUAL #, LOCUS1)
AND INDIVIDUAL #, LOCUS2}.

IF( ) HOLDS THE NUMBER OF ALLELES PER LOCUS, ALLELES ARE ASSUMED TO BE
EQUALLY FREQUENT, P=1/IF().

IG( ) IS THE MATRIX IN WHICH STORES THE GENEALOGY
A( , ) IS THE OBSERVED FREQUENCY OF THE ALLELES.

WRITE(*,*) /WHAT FILE WILL BE USED FOR THE GENEALOGY?’
READ (*, 10 GENEALFILE

10 FORMAT(AQ
WRITE(*,*) 'WHAT FILE FOR THE FREQUENCY DATA?’
READ(*,10) FREQFILE
WRITE(#,*%) 'WHAT FILE FOR THE GENOME QUTPUT?’
READ(*,10) GENOMEFILE
WRITE ( * *;'WHAT MUTATION RATE DO YOU WANT?/

-

WRITE(*, %) (EXPRESS AS A PERCENTAGE PER ALLELE, '
READ (*, %) MUT

RMUT=FLOAT (MUT) /100,

OPEN (UNIT=1, FILE=GENEALFILE, STATUS=/OLD/}
OPEN EUNITﬂ2 FILE=FREQFILE, STATUS=/QLD’)

OPEN (UNIT=3, FILE=GENOMEFILE, STATUS=’OLD’)

THE RANDOM NUMBERS ARE READ FROM THE FILE /RAN.DAT’

OPEN EUN1T=4, PILE='RAN,DAT’, STATUS=’/OLD’)
READ (1,*)N
DG 100 I=1,N
DO 100 J=1,N
READ (1, *)IG(I J)
100 CONTINUE
READ (2,%)L
DO 200 I=1,L
READ (2,*)IF(I)
200 CONTINUE

NOW, TO DETERMINE THE MAXIMUM IF()

M1=IF(1)

DO 300 I=2,L

IF(M1 .LT. IF(I)) M1=IF(I)
300 CONTINUE

-



COQOOQ0

o000

Qoo

Q0o aan QaQo

Q00

93

THE COMPUTATION TO CHECK FOR PARENTS. THOSE WITHOUT PARENTS ARE
RANDOMLY ASSIGNED A GENOME ACCORDING TO ALLELE FREQUENCIES. THOSE
WITH PARENTS ARE GIVEN A GENOME DEPENDENT ON THE GENOME OF THEIR
PARENTS (ASSUMING MENDELIAN INHERITANCE).

DO 500 IX=1,N

IP1=0

IP2=0

DO 410 IY=1l,N
IF(IG(IX,IY) .EQ, 0) GO TO 410
IF(IPl .EQ. 0) GO TO 410
IP2=1Y
410 CONTINUE
IF(IP1 .NE. 0) GO TO 430

RANDOM GENERARATION OF GENOTYPE FOR ANCESTORS (BASED ON ALLELE FREQS)

DO 420 IZ=1,L
CALL RANDOM(SEEDR,R)
IGEN (IX, 2%1Z~1) =IFIX(R*FLOAT(IF(IZ))+1.)
CALL RANDOM (SEED,R)
IGEN (IX,2%1%)=IFIX(R*FLOAT (IF(I2))+1.)
420  CONTINUE
GO TO 500

GENERATION OF GENOTYPE OF INDIVIDUAL IX WITH PARENTS IP1 AND IP2.

430 DO 440 T2=1,L
CALL RANDOM(SEED,R)
IGEN (IX,2*I2~1)=IGEN(IP1,2%I%~IFIX(2.%R))
CALL RANDOM(SEED,R}
IGEN(IX,2%1%)=IGEN(IP2,2%IZ-IFIX(2.*R))

MUTATION OF ALLELE AT LOCUS 2%IZ~1

CALL RANDOM (SEED,R)
IF(R .GT, RMUT) GOTO 435

ASSIGN A (POSSIBLY NEW) ALLELE

CALL RANDOM(SEED,R&
TGEN(IX,2#12~1)=IFIX(R*FLOAT(IF{IZ})+1.)

MUTATION OF ALLELE AT LOCUS 2+#I7%

435 CALL RANDOM(SEED,R)
IF(R .GT, RMUT} GOTO 440

ASSIGN A (POSSIBLY NEW) ALLELE

CALL RANDOM(SEED,R)
IGEN(IX,2*%12)=TFIX(R*FLOAT(IF{IZ))+1.)
440 CONTINUE
500 CONTINUE
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NOW TO CHQOSE THE MAXIMUM RL(I) AND MAKE THE DISTANCE MATRIX
M{IX,IY) BASED ON THIS&

D2=RL (1)
M3=1
DO 600 IZ=2,3
IF(RL(1Z) .GT. D2) THEN
D2=RL(1%)
M3=1%
ENDIF
600 CONTINUE
M(IX, IW)=M3
IF(M(IX,IW) .EQ. 3) THEN
M{1X,IW)=0
ENDIF
RL§1;=0.
RL{2)=0.
RL(3) =0,
700 CONTINUE

NOW TO MAKE M(,) SYMMETRIC

DO 800 IX=1,N
DO 800 I¥=1,IX-1
M(IX,IY)=M(IY,IX)

800 CONTINUE

NOW TO WRITE TO A FILE

DO 900 IX=1,N
DO 900 IV¥=1,N
WRITE(2,*)M(IX, 1Y)
900 CONTINUE
END
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MATRIX.FOR

MATRIX.FOR

10

THIS PROGRAM TAKES A DISTANCE MATRIX FROM RECONSTRUCT.FOQR AND
BUILDS A DISTANCE MATRIX THAT IS COMPLETE, THAT IS, IT ADDS
ANY NECESSARY MISSING VERTICES.

DIMENSION M(50,50), IF(50), IHEAD(50)
CHARACTER*20 DISTFILE, MATFILE, GENEALFILE, FREQFILE, GENOMEFILE
WRITE(*,*) 'WHAT IS THE DISTANCE FILE TO BE CONVERTED?’

READ (%, 10) DISTFILE

FORMAT (A9
WRITE(%, %) ‘WHAT 1S THE MATRIX FILE TO RECTEVE OUTRUT?’
READ (%, 10) MATFILE

OPEN (UNIT=1, FILE=DISTFILE, STATUS=/OLD’)
OPEN (UNIT=2, FILE=MATFILE, STATUS=/OLD’)

READ IN OF DISTANCE MATRIX FROM RECONSTRUCT

30

100

51¢

520

530
540

8550
600

READ(1,10)GENEALFILE
READ (1,10} FREQFILE
READ({1, 10) GENOMEFILE
READ (1, *) MUT
OPEN (UNIT=3, FILE~GENEALFILE, STATUS=’OLD’)
READ (3, #)N
OPEN (UNIT=4, FILE=FREQFILE, STATUS=’OLD’)
READ (4, *) L
DO 30 I=1,L
READ (4, %) IF (1)
CONTINUE
DO 100 IX=1,N
DO 100 I¥el,N
READ (1, *)M(IX,IY)
CONTINUE ,
WRITE(2,*) 'THE GENEALOGY FILE WAS: ’,GENEALFILE
WRITEsz,*)'THE FREQUENCY FILE WAS: ’,FREQFILE

WRITE(2,#) 'THE GENOME FILE WAS: /,GENOMEFILE
WRITE(2, %)/ ¢

WRITE(2,*) 'THERE WERE ,N,’ INDIVIDUALS IN THE POPULATION.’
FORMAT (12}

WRITE(2,%)/ *

WRITE 2,*3fTHIs RUN USED /,L,' LOCI WITH THE NUMBER OF ALLELES'

WRITEsz,*)'AT EACH LOCUS AS DESRIBED BY THIS VECTOR:/

WRITE(2,520) (IF(J), J=1,L)

FORMAT(’ ¢,5013)

WRITE(z,*;’ ‘

gang(z,:):Tﬁg MUTATION RATE USED WAS !,MUT,’% PER ALLELE,’
RITE(2,

WRITE(2,*) *HERE ARE THE RESULTS:’

DO B30 I=1,N+NEW

THEAD(I)=I~10%IFIX (FLOAT (I)/10.)

CONTINUE
WRITE(2,540}10, (IHEAD(J), JT=1,N+NEW)
FORMAT(/ /,12,13,4912)

DO 600 IX=1,N+NEW
WRITE(2,550) IX, (M(IX,IV), I¥Y=l,N+NEW)
FORMAT(/ /,12,13,4912)

CONTINUE

END



