Decompositions of the Complete Digraph into each of the Orientations of a 4-Cycle which admit a Certain Automorphism Robert B. Gardner ¹, Pam Torbett, Amy Weems Department of Mathematics East Tennessee State University Johnson City, Tennessee 37614 - 0663 Abstract. A decomposition of the complete digraph on v vertices, D_v , is said to be f-cyclic if it admits an automorphism consisting of f fixed points and a single cycle of length v - f. Necessary and sufficient conditions are given for the existence of f-cyclic decompositions of the complete digraph into each of the four orientations of a 4-cycle. ## 1 Introduction Let D_v denote the complete digraph on v vertices. If g is a digraph, then a g-decomposition of D_v is a set $\gamma = \{g_1, g_2, \ldots, g_n\}$ of arc-disjoint subgraphs of D_v such that each g_i (which is called a block of the decomposition) is isomorphic to g and $\bigcup_{i=1}^n A(g_i) = A(D_v)$, where A(G) is the arc set of digraph G. An automorphism of a g-decomposition of D_v is a permutation of the vertex set of D_v which fixes the set γ . There are two orientations of the 3-cycle: the 3-circuit and the following digraph (called a "transitive triple"): A decomposition of D_v into 3-circuits is equivalent to a Mendelsohn triple system of order v denoted MTS(v) [9]. A decomposition of D_v into transitive triples is equivalent to a directed triple system of order v, denoted DTS(v) [8]. There are four orientations of the 4-cycle: the 4-circuit and the following: ¹Research supported by ETSU under RDC grant #96-029/mjr We represent X as $[a, b, c, d]_X$, Y as $[a, b, c, d]_Y$, and Z as $[a, b, c, d]_Z$. We represent the 4-circuit with arc set $\{(a, b), (b, c), (c, d), (d, a)\}$ by any cyclic shift of $[a, b, c, d]_C$. A 4-circuit decomposition of D_v exists if and only if $v \equiv 0$ or 1 (mod 4), $v \neq 4$ [14]. An X-decomposition of D_v exists if and only if $v \equiv 0$ or 1 (mod 4), $v \neq 5$; a Y-decomposition of D_v exists if and only if $v \equiv 0$ or 1 (mod 4), $v \notin \{4,5\}$; and a Z-decomposition of D_v exists if and only if $v \equiv 1 \pmod{4}$ [6]. A digraph decomposition admitting an automorphism consisting of a single cycle is said to be cyclic. A cyclic MTS(v) exists if and only if $v \equiv 1$ or 3 (mod 6), $v \neq 9$ [4] and a cyclic DTS(v) exists if and only if $v \equiv 1$, 4, or 7 (mod 12) [5]. A cyclic 4-circuit decomposition of D_v exists if and only if $v \equiv 1 \pmod{4}$, $v \neq 5$; a cyclic Y-decomposition of D_v exists if and only if $v \equiv 1 \pmod{4}$, $v \neq 5$; and a cyclic Y-decomposition of D_v exists if and only if $v \equiv 1 \pmod{4}$, $v \neq 5$; and a cyclic Z-decomposition of D_v exists if and only if $v \equiv 1 \pmod{4}$, $v \neq 5$; and a cyclic Z-decomposition of D_v exists if and only if $v \equiv 1 \pmod{4}$ [3,10]. A decomposition of D_v admitting an automorphism consisting of a fixed point and a cycle of length v-1 is said to be rotational. A rotational MTS(v) exists if and only if $v \equiv 1, 3$, or 4 (mod 6), $v \neq 10$ [1], and a rotational DTS(v) exists if and only if $v \equiv 0 \pmod{3}$ [2]. A rotational 4-circuit decomposition of D_v exists if and only if $v \equiv 1 \pmod{4}$ [13]; a rotational X-decomposition of D_v exists if and only if $v \equiv 0 \pmod{4}$; a rotational Y-decomposition of D_v exists if and only if $v \equiv 0 \pmod{4}$, $v \neq 4$; and a rotational Z-decomposition of D_v does not exist [3]. A decomposition of D_v which admits an automorphism consisting of f fixed points, f > 1, and a single cycle of length v - f is said to be f - cyclic. Necessary and sufficient conditions for the existence of a $f - cyclic \ MTS(v)$ are given in [7] and for a $f - cyclic \ DTS(v)$ are given in [12]. The purpose of this paper is to give necessary and sufficient conditions for the existence of a $f - cyclic \ g - decomposition$ of D_v where g is an orientation of the 4 - cycle. ## 2 The Constructions In this section we give necessary and sufficient conditions for the existence of a g-decomposition of D_v , where g is an orientation of the 4-cycle, which admits an automorphism consisting of f fixed points and a cycle of length v-f. Throughout this section we suppose the vertex set of D_v is $\{0_0, 1_0, \ldots, (f-1)_0, 0_1, 1_1, \ldots, (v-f-1)_1\}$ and let the relevant automorphism be $(0_0)(1_0)\ldots((f-1)_0)(0_1, 1_1, \ldots, (v-f-1)_1)$. We need a preliminary result before presenting the constructions. **Lemma 2.1** If π is an automorphism of a g-decomposition of D_v , then the fixed points of π form a sub-g-decomposition. That is, if $\pi(x_0) = x_0$ and $\pi(y_0) = y_0$ for $(x_0, y_0) \in A(g_0)$, then $\pi(g_0) = g_0$. **Proof.** If $(x_0, y_0) \in A(g_0)$ then by the definition of automorphism, $(\pi(x_0), \pi(y_0)) \in A(\pi(g_0))$. But then $(x_0, y_0) \in A(\pi(g_0))$ and since (x_0, y_0) is in the arc set of exactly one g_i , it must be that $g_0 = \pi(g_0)$. We have a necessary condition for the existence of a f-cyclic 4-circuit decomposition of D_v : Lemma 2.2 If $v \equiv 0 \pmod{4}$ and v = f+4, then a f-cyclic 4-circuit decomposition of D_v does not exist. **Proof.** Suppose such a system does exist. From Lemma 2.1, it follows that arcs of type (a_1, b_1) must be contained in blocks of the form $[w_0, x_1, y_1, z_1]_C$ or $[w_1, x_1, y_1, z_1]_C$. Now each set $$\{\pi^n([w_0, x_1, y_1, z_1]_C) \mid n \in \mathbf{Z}, w \in \mathbf{Z}_f, \{x, y, z\} \subset \mathbf{Z}_{v-f}\}$$ is of cardinality 4 and so the total number of arcs of type (a_1, b_1) in blocks of the form $[w_0, x_1, y_1, z_1]_C$ is a multiple of 8. Therefore, such a system can have at most one fixed point in blocks of this form, since under our hypotheses D_v contains only 8 arcs of type (a_1, b_1) . Therefore each remaining fixed point must be contained in some block of the form $[w_0, x_1, y_0, z_1]_C$ (since each arc of the form (a_0, b_1) is contained in some block). However, such blocks contain two distinct fixed vertices. Therefore, the cardinality of the set $$\{w_0 \mid w_0 \in V([w_0, x_1, y_0, z_1]_C), \{w, y\} \subset \mathbf{Z}_f, \{x, z\} \subset \mathbf{Z}_{v-f}\}$$ is even. This implies that the cardinality of the set $$\{w_0 \mid w_0 \in V([w_0, x_1, y_1, z_1]_C), w \in \mathbf{Z}_f, \{x, y, z\} \subset \mathbf{Z}_{v-f}\}$$ is even. However as seen above, the cardinality of this set can be at most 1. Therefore, the cardinality of this set must be 0, and all arcs of the type (a_1, b_1) must be contained in blocks of the form $[w_1, x_1, y_1, z_1]_C$. However, the only such admissible blocks are $[0_1, 1_1, 2_1, 3_1]_C$ and $[3_1, 2_1, 1_1, 0_1]_C$, both of which are fixed under π and both of which contain 4 arcs of the form (a_1, b_1) . Under our hypotheses, D_v contains 12 arcs of the form (a_1, b_1) , therefore such a system cannot exist. **Theorem 2.1** An f-cyclic 4-circuit decomposition of D_v exists if and only if $f \equiv 0$ or $1 \pmod 4$, $f \neq 4$, $v \equiv 0$ or $1 \pmod 4$, $v \neq 4$, and $v - f \geq 8$ in the case $f \equiv v \equiv 0 \pmod 4$. **Proof.** The fact that a 4-circuit decomposition of D_v exists only if $v \equiv 0$ or 1 (mod 4), $v \neq 4$, along with Lemma 2.1, give the necessary congruence conditions on v and f. The necessity of $v \geq f + 8$ for $f \equiv v \equiv 0 \pmod{4}$ is given in Lemma 2.2. These conditions are shown to be sufficient in the following four cases. <u>Case 1.</u> Suppose $f \equiv 0 \pmod{4}$, $f \neq 4$, $v \equiv 0 \pmod{4}$, $v \neq 4$, and $v \geq f + 8$. Say v - f = 4t. Consider the blocks: ``` [0_1, i_1, (t+2i-1)_1, (t+i-1)_1]_C \text{ for } i = 2, 3, \dots, t-1, [(2i)_0, 0_1, (2i+1)_0, 1_1]_C \text{ for } i = 1, 2, \dots, f/2-1. [0_1, t_1, (2t)_1, (3t)_1]_C, [0_1, 1_1, (2t)_1, (2t+1)_1]_C, ``` $[0_0, 1_1, (2t+1)_1, (t+1)_1]_C$, and $[1_0, 0_1, (2t+1)_1, (2t)_1]_C$. <u>Case 2.</u> Suppose $f \equiv 0 \pmod{4}$, $f \neq 4$, $v \equiv 1 \pmod{4}$ and $v \geq f + 8$. Say v - f = 4t - 1. Consider the blocks: $[(2i)_0, 0_1, (2i+1)_0, 1_1]_C$ for $i = 0, 1, \ldots, f/2 - 1$, and the blocks for a cyclic 4-circuit decomposition of D_{v-f} on the vertex set $\{0_1, 1_1, \ldots, (v-f-1)_1\}$. Case 3. Suppose $f \equiv 1 \pmod{4}$ and $v \equiv 0 \pmod{4}$, $v \neq 4$ and $v \geq f + 8$. Say v - f = 4t - 1. Consider the blocks: $[0_1, (1+2i)_1, (3+4i)_1, (2+2i)_1]_C$ for $i = 0, 1, \dots, t-3$, $[(3+2i)_0, 0_1, (4+2i)_0, 1_1]_C$ for $i = 0, 1, \dots, (f-5)/2$, $[0_0, 0_1, (2t-3)_1, (4t-3)_1]_C$, $[1_0, 0_1, (2t-2)_1, (4t-3)_1]_C$ and $[2_0, 0_1, (2t+1)_1, 4_1]_C$. Case 4. Suppose $f \equiv 1 \pmod{4}$ and $v \equiv 1 \pmod{4}$ and $v \geq f+8$. Say v-f=4t. Consider the blocks: $[0_1, i_1, (t+2i)_1, (t+i)_1]_C$ for i = 1, 2, ..., t-1, $[(2i-1)_0, 0_1, (2i)_0, 1_1]_C$ for i = 1, 2, ..., (f-1)/2, $[0_1, t_1, (2t)_1, (3t)_1]_C$, and $[0_0, 0_1, (2t)_1, t_1]_C$. In each case, these blocks, along with their images under the permutation $(0_0)(1_0)\cdots(f-1)_0(0_1,1_1,\ldots,(v-f-1)_1)$ and the blocks for a 4-circuit decomposition of D_f on the vertex set $\{0_0,1_0,\ldots,(f-1)_0\}$, form an f-cyclic 4-circuit decomposition of D_v . Lemma 2.3 An f-cyclic X-decomposition of D_v satisfies the condition $v \ge 3f + 1$. **Proof.** First, we observe that it is impossible for such a decomposition to contain a block of the form $[w_0, x_1, y_0, z_1]_X$. Applying π^{x-z} yields $[\pi^{x-z}(w_0), \pi^{x-z}(x_1), \pi^{x-z}(y_0), \pi^{x-z}(z_1)]_X = [w_0, \pi^{x-z}(x_1), y_0, x_1]_X$, a contradiction since these are distinct blocks which both contain the arc (w_0, x_1) . Similarly, such a decomposition cannot contain blocks of the form $[w_1, x_0, y_1, z_0]_X$. Therefore by Lemma 2.1, for each fixed point w_0 , we have $w_0 \in V(g_{w_0})$ for some g_{w_0} where $V(g_{w_0}) = \{w_0, x_1, y_1, z_1\}$. Let $S_{w_0} = \bigcup_{x \in \mathbb{Z}} A(\pi^n(g_{w_0}))$ and $$S = \bigcup_{\{w_0 \mid w_0 \in \{0_0, 1_0, \dots, (f-1)_0\}\}} S_{w_0}.$$ Now, there are (v-f)(v-f-1) arcs of the form (a_1,b_1) in $A(D_v)$ and there are 2f(v-f) arcs of this form in S. So it is necessary that $(v-f)(v-f-1) \ge 2f(v-f)$, or that $v \ge 3f+1$. **Theorem 2.2** An f-cyclic X-decomposition of D_v exists if and only if $v \ge 3f + 1$ and either $f \equiv 0 \pmod{4}$ and $v \equiv 1 \pmod{4}$, $v \ne 5$, or $f \equiv 1 \pmod{4}$, $f \ne 5$, and $v \equiv 0 \pmod{4}$. **Proof.** As seen in the proof of Lemma 2.3, each block of such a decomposition must be of one of the following forms: $[w_0, x_0, y_0, z_0]_X$, $[w_1, x_0, y_1, z_1]_X$, $[w_1, x_1, y_0, z_1]_X$ or $[w_1, x_1, y_1, z_1]_X$. Now, the cardinality of the sets $\{\pi^n([w_1, x_0, y_1, z_1]_X) \mid n \in \mathbb{Z}\}$, $\{\pi^n([w_1, x_1, y_0, z_1]_X) \mid n \in \mathbb{Z}\}$ and $\{\pi^n([w_1, x_1, y_1, z_1]_X) \mid n \in \mathbb{Z}\}$ are each (v - f). Since each of these blocks contains an even number of arcs of the type (a_1, b_1) , it must be that the total number of such arcs is an even multiple of (v - f). However, there are (v - f)(v - f - 1) arcs of this type in $A(D_v)$, and so it is not possible that $f \equiv v \pmod{4}$. This condition, along with Lemmas 2.1 and 2.3 and the conditions for the existence of a X-decomposition of D_v gives the necessary conditions for the existence of a f-cyclic X-decomposition of D_v . We now establish sufficiency in the following four cases: Case 1. Suppose $f \equiv 1 \pmod{4}$, $f \neq 5$, $v \equiv 0 \pmod{4}$, $v - f \equiv 7 \pmod{8}$, and ``` v \ge 3f + 1. Say v - f = 8t - 1. Consider the blocks: [0_1, (1+i)_1, (6t+2i)_1, (2t+i)_1]_X for i = (f-1)/2, (f-1)/2+1, \ldots, t-1 (omit if t < (f+1)/2, [0_1, (t+1+i)_1, (8t+2i)_1, (5t-1+i)_1]_X for i = \max\{0, (f-1)/2 - t\}, \max\{0, (f-1)/2 - t\} 1)/2-t\}+1,\ldots,t-2 (omit if 2t<(f+3)/2), [0_1, (1+i)_0, (6t+2i)_1, (2t+i)_1]_X for i = 0, 1, \dots, \min\{t-1, (f-1)/2-1\}, [0_1, (\min\{t+1, (f-1)/2+1\} + i)_0, (2t+1)_1, (1+i)_1]_X for i=0,1,\ldots,\min\{t-1\}_X 1, (f-1)/2-1, [0_1,(2t+1+i)_0,(8t+2i)_1,(5t-1+i)_1]_X for i=0,1,\ldots,(f-1)/2-t-1 (omit if (f-1)/2-t<1, [0_1,((f-1)/2+t+1+i)_0,(2t+1)_1,(t+1+i)_1]_X for i=0,1,\ldots,(f-1)/2-t-1 (omit if (f-1)/2 - t < 1), and [(6t-1)_1, 0_0, 0_1, (6t-2)_1]_X. Case 2. Suppose f \equiv 1 \pmod{4}, f \neq 5, v \equiv 0 \pmod{4}, v - f \equiv 3 \pmod{8}, and v \ge 3f + 1. Say v - f = 8t + 3. Consider the blocks: [0_1, (1+i)_1, (6t+4+2i)_1, (2t+1+i)_1]_X for i = (f-1)/4, (f-1)/4+1, \dots, t-1, [0_1, (t+1+i)_1, (8t+4+2i)_1, (5t+1+i)_1]_X for i = (f-1)/4, (f-1)/4+1, \ldots, t-1, [0_1, (1+i)_0, (6t+4+2i)_1, (2t+1+i)_1]_X for i=0,1,\ldots,(f-1)/4-1, [0_1,((f-1)/4+1+i)_0,(1+2i)_1,(5t+1+i)_1]_X for i=0,1,\ldots,(f-1)/4-1, [0_1,((f-1)/2+1+i)_0,(2t+1)_1,(1+i)_1]_X for i=0,1,\ldots,(f-1)/4-1, [0_1, (3(f-1)/4+1+i)_0, (2t+1)_1, (t+1+i)_1]_X for i=0,1,\ldots,(f-1)/4-1, and [1_1, 0_0, 0_1, (6t+2)_1]_X. Case 3. Suppose f \equiv 0 \pmod{4}, v \equiv 1 \pmod{4}, v \neq 5, v - f \equiv 1 \pmod{8}, and v \ge 3f + 1. Say v - f = 8t + 1. Consider the blocks: [0_1, (1+i)_1, (6t+2+2i)_1, (2t+1+i)_1]_X for i = f/4, f/4+1, \dots, t-1, [0_1, (t+1+i)_1, (1+2i)_1, (5t+1+i)_1]_X for i = f/4, f/4+1, \dots, t-1, [0_1, i_0, (6t+2+2i)_1, (2t+1+i)_1]_X for i = 0, 1, \dots, f/4-1, [0_1, (f/4+i)_0, (1+2i)_1, (5t+1+i)_1]_X for i=0,1,\ldots,f/4-1, [0_1, (f/2+i)_0, (2t+1)_1, (1+i)_1]_X for i=0,1,\ldots,f/4-1, and [0_1, (3f/4+i)_0, (2t+1)_1, (t+1+i)_1]_X for i=0,1,\ldots,f/4-1. Case 4. Suppose f \equiv 0 \pmod{4}, v \equiv 1 \pmod{4}, v \neq 5, v - f \equiv 5 \pmod{8}, and v \ge 3f + 1. Say v - f = 8t + 5. Consider the blocks: [0_1, (2+i)_1, 1_1, (2t+5+2i)_1]_X for i = f/2, f/4+1, \ldots, t (omit if t < f/2), [0_1, (t+3+i)_1, 1_1, (4t+8+2i)_1]_X for i = \max\{0, f/2-1-t\}, \max\{0, f/2-1-t\} t} + 1,..., t – 2 (omit if 2t < f/2 + 1), [0_1, i_0, (3+2i)_1, (2+i)_1]_X for i = 0, 1, \dots, \min\{t, f/2-1\},\ [0_1, (\min\{t+1, f/2\} + i)_0, 1_1, (2t+5+2i)_1]_X for i = 0, 1, \dots, \min\{t, f/2-1\}, [0_1, (2t+2+i)_0, (2t+5+2i)_1, (t+3+i)_1]_X for i=0,1,\ldots,f/2-t-2 (omit if f/2-t<2), [0_1, (f/2+t+1+i)_0, 1_1, (4t+8+2i)_1]_X for i=0,1,\ldots,f/2-t-2 (omit if f/2 - t < 2), and [0_1, 1_1, (2t+3)_1, (4t+6)_1]_X In each case, these blocks, along with their images under the permutation (0_0)(1_0)\cdots (f-1)_0(0_1,1_1,\ldots,(v-f-1)_1) and the blocks for a X-decomposition of D_f on the vertex set \{0_0, 1_0, \dots, (f-1)_0\}, form an f-cyclic X-decomposition of D_v. ``` **Theorem 2.3** An f-cyclic Y-decomposition of D_v exists if and only if <u>either</u> $f \equiv 0$ (mod 4), $f \neq 4$, and $v \equiv 1 \pmod{4}$, $v \neq 5$ or $f \equiv 1 \pmod{4}$, $f \neq 5$, and $v \equiv 0 \pmod{4}$, $v \neq 4$. **Proof.** By Lemma 2.1, each arc of the form (a_1, b_1) must be contained in a block of one of the following forms: $[w_1, x_0, y_1, z_1]_V$ or $[w_1, x_1, y_1, z_1]_V$. Now, the cardinality of the sets $\{\pi^n([w_1, x_0, y_1, z_1]_V) \mid n \in \mathbb{Z}\}$ and $\{\pi^n([w_1, x_1, y_1, z_1]_V) \mid n \in \mathbb{Z}\}$ are both (v-f). Since each of these blocks contains an even number of arcs of the form (a_1, b_1) , it must be that the total number of such arcs is an even multiple of (v-f). However, there are (v-f)(v-f-1) arcs of this form in $A(D_v)$, and so it is not possible that $f \equiv v \pmod{4}$. This condition, along with Lemma 2.1 and the conditions for the existence of a Y-decomposition of D_v gives the necessary conditions for the existence of a f-cyclic f-decomposition of f- Case 1. Suppose $f \equiv 1 \pmod{4}$, $f \neq 5$, and $v \equiv 0 \pmod{4}$, $v \neq 4$. Then $v - f \equiv 3 \pmod{4}$, say v - f = 4t - 1. Consider the blocks: $$[0_1, (1+i)_1, (4t-3)_1, (2t-1+i)_1]_Y$$ for $i = (f-1)/2, (f-1)/2+1, \ldots, t-2, [0_1, (1+i)_0, (4t-3)_1, (2t-1+i)_1]_Y$ for $i = 0, 1, \ldots, (f-1)/2-1, [0_1, ((f-1)/2+1+i)_0, (4t-3)_1, (1+i)_1]_Y$ for $i = 0, 1, \ldots, (f-1)/2-1$, and $\{0_1, ((f-1)/2+1+i)_0, (4t-3)_1, (1+i)_1\}_Y \text{ for } i=0,1,\ldots,(f-1)/2-1, [1_1,0_0,(4t-3)_1,0_1]_Y.$ Case 2. Suppose $f \equiv 0 \pmod{4}$, $f \neq 4$, and $v \equiv 1 \pmod{4}$, $v \neq 5$. Then $v - f \equiv 1 \pmod{4}$, say v - f = 4t + 1. Consider the blocks: $$[0_1, (1+i)_1, (4t-1)_1, (2t+1+i)_1]_Y$$ for $i = f/2 - 1, f/2, \dots, t-2, [0_1, i_0, (4t-1)_1, (2t+1+i)_1]_Y$ for $i = 0, 1, \dots, f/2 - 2,$ $[0_1, (f/2-1+i)_0, (4t-1)_1, (1+i)_1]_Y$ for $i=0,1,\ldots,f/2-2$, and $[0_1, (2t-1)_1, (2t-2)_1, (4t-1)_1]_Y$ and $[0_1, (f-2)_0, 1_1, (f-1)_0]_Y$. In either case, these blocks, along with their images under the permutation $(0_0)(1_0)\cdots(f-1)_0(0_1,1_1,\ldots,(v-f-1)_1)$ and the blocks for a Y-decomposition of D_f on the vertex set $\{0_0,1_0,\ldots,(f-1)_0\}$, form an f-cyclic Y-decomposition of D_v . **Theorem 2.4** An f-cyclic Z-decomposition of D_v does not exist. **Proof.** Suppose that such a system exists. We observe that the system can contain no blocks of the form $[w_0, x_1, y_1, z_1]_Z$ or $[x_1, w_0, y_1, z_1]_Z$, for applying π^{x-z} to such blocks leads to a contradiction, as in the proof of Lemma 2.3. So all arcs of the form (a_1, b_1) must be contained in blocks of the form $[w_1, x_1, y_1, z_1]_Z$. Therefore, there is a cyclic subsystem of the given system of order (v - f). So $v - f \equiv 1 \pmod{4}$. But by Lemma 2.1, $f \equiv 1 \pmod{4}$ and so $v \equiv 2 \pmod{4}$, a contradiction. ## References - [1] C. J. Cho, Rotational Mendelsohn triple systems, Kyungpook Math. J. 26(1) (1986), 5-9. - [2] C. J. Cho, Y. C. Chae and S. G. Hwang, Rotational directed triple systems, J. Korean Math. Soc. 24(2) (1987), 133-142. - [3] G. D. Coker, R. Gardner and R. Johnson, Decompositions of the complete digraph and the complete graph which admit certain automorphisms, *Congressus Numerantium* 108 (1995), 64-84. - [4] C. Colbourn and M. Colbourn, Disjoint cyclic Mendelsohn triple systems, Ars Combinatoria 11 (1981), 3-8. - [5] M. Colbourn and C. Colbourn, The analysis of directed triple systems by refinement, Annals of Discrete Math. 15 (1982), 97-103. - [6] F. Harary, W. Wallis, and K. Heinrich, Decompositions of complete symmetric digraphs into the four oriented quadrilaterals, *Combinatorial Mathematics* in Lecture Notes in Mathematics #686, Springer-Verlag, 1978. - [7] D. G. Hoffman, Cyclic embeddings of semi-symmetric quasigroups and Mendelsohn triple systems, Ars Combinatoria, to appear. - [8] S. Hung and N. Mendelsohn, Directed triple systems, J. Combin. Theory Series A 14 (1973), 310-318. - [9] N. Mendelsohn, A natural generalization of Steiner triple systems, Computers in Number Theory, eds. A. O. Atkin and B. Birch, Academic Press, London, 1971. - [10] B. Micale and M. Pennisi, Cyclic decompositions of complete symmetric digraphs into the four oriented quadrilaterals, *Utilitas Mathematica*, to appear. - [11] B. Micale and M. Pennisi, Cyclic Mendelsohn quadruple systems, Ars Combinatoria 35 (1993), 225-236. - [12] B. Micale and M. Pennisi, The spectrum of d-cyclic oriented triple systems, Ars Combinatoria, to appear. - [13] M. Pennisi, On the rotational Mendelsohn designs, J. Combinatorics, Information and System Sciences, to appear. - [14] J. Schönheim, Partition of the edges of the directed complete graph into 4-cycles, *Discrete Math.* 11 (1975), 67-70.