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Abstract. A decomposition of the complete digraph on v vertices,
Dy, is said to be f—eyelic il it admits an automorphism consisting
of f fixed points and a single cycle of length v — f. Necessary and
sufficient conditions are given for the existence of f—cyclic decom-
positions of the complete digraph into each of the four orientations
of a 4—cycle,

1 Introduction

Let D, denote the complete digraph on v vertices. If ¢ is a digraph, then a g— decompo-
silion of D, is a set v = {g1,04,...,9,} of arc-disjoint subgraphs of D, such thal each

n

gi (which is called a block of the decomposition) is isomorphic to ¢ and | | A(g,) =
=1
A(D,), where A(G) is the arc set, of digraph G. An automorphism of a g—decomposition
of Dy is a permutation of the vertex set of D, which fixes the set Y.
There are two orientations of the 3-cycle: the 3-circuit and the following digraph
(called a “transitive triple”):

A decomposition of D, into 3-circuils is equivalent to a Mendelsohn triple system
of order v denoted MT'S{(v) [9]. A decomposition of £, into transitive triples is
equivalent Lo a dirccted triple system of order v, denoted DTS5(v) [8).

‘There are four orientations of the 4-cycle: the 4-circuit and the following:
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We represent X as [a,b,¢,d)x, Y as [a,b,¢,d)y, and 7 as la,b,¢,d]z. We represent,
the 4-circuit with arc set {(a, ), (b,c),{c,d),(d,a)} by any cyclic shift of la, b, ¢, d].
A 4—circuit decomposition of D, exists if and only if v = 0 or 1 (mod 4), v # 4
[14]. An X —decomposition of D, exists if and only if v = 0 or 1 (mod 4), v # 5; a
Y —decomposition of D, exists il and only if v = 0 or 1 (mod 4), v ¢ {4,5}; and a
Z—decomposition of [, exists if and only if v = 1 (mod 4) [6].

A digraph decomposition admitting an automorphism consisting of a single cycle
is said to be eyclic. A cyclic MTS(v) exists if and only if v = | or 3 (mod 6),
v £ 9 [4] and a cyclic DT5(v) exists if and only if v = 1, 4, or 7 (mod 12) [5].
A cyclic 4-circuit decomposition of D, exists if and only if v = | (mod 1) [11]; a
cyclic X —decomposition of D, exists if and only if v = 1 (inod 4), v # 5 a cyelic

5; and a cyclic

Y —decomposition of D, exists if and only if v = | (mod 4), » £
% —decomposition of 1), exists il and only if v =1 (mod 4) (3,10].

A decomposition of D, admitiing an automorphism consisting of a fixed point
and a cycle of length v — 1 is said Lo be rolational A rotational M1 S(v) exists it
and only if v = 1,3, or 4 (mod 6), » # 10 1], and a rotational DT S5(v) exisis if and
only if v = 0 (imod 3) [2]. A rotational 4-circuit decomposition of D, exists if and
only il v = 1 (mod 4) [13]; a rotational X —decomposition ol 1), exists il and only il
v = 0 (mod 4); a rotational Y —decomposition ol D, exists if and only i v = 0 (iod
1), v # 4; and a rotational Z—decomposition of 1, does not exist [3].

A decomposition of 1, which admits an automorphism consisting of [ fixed points,
J > 1, and a single cycle of length v — f is said to be [—cyclic. Necessary and
suflicient conditions for the existence of a f—cyclic MT'§(v) are given in [7} and for a
f—eydic DT'S(v) are given in [12]. The purpose of this paper is to give necessary and
sullicient conditions for the existence of a f--cyclic g—decomposition of ), where g
is an oricidalion of the 4 —cycle.

2 The Constructions

In this scction we give necessary and sufficient conditions for the existence of a

g—decomposition ol 1}, where g is an orientation of the 4—cycle, which admits an au-

tomorphisim consisting ol f fixed points and a cycle of length v — f. Throughout this

scction we supposc the vertex set of 1, is {0g, lo,..., (f = Do, 01, Ly, ooy (0= f — 1)}

and let the relevant automorphism be (0o)(Lo)--- ((f = 1)o)(01, 11, ..., (0 = f — 1))).
We need a preliminary result belore presenting the constructions.

Lemma 2.1 If = is an automorphism of a g—decomposition of D,, then the fized
points of m form a sub—g—decomposition. That is, tf m(xp) = zo and 7(yg) = yo for
(zo,Y0) € Algo), then m{g9) = go.

Proof. If (z0,90) € A(go) then by the definition of automorphism, (7(xp), #(y0)) €
A(m(go)). But then (o, 30) € A(m(go)) and since (zo,¥0) is in the arc set of exactly
one g;, it must be that go = x(go).

We have a necessary condition for the existence of a f—cyclic 4—circuit decom-
position of D,:
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Lemma 2.2 If v = 0 (mod 4) andv = f+4, then o f—cyclic 4—circuit decomposition
of D, does not exist.

Proof. Suppose such a system does exist. From Lemma 2.1, it follows that arcs of
type (@i, b1) must be contained in blocks of the form [wo, z1, y1, 21]c or [wy, 21, 11, 21)c-
Now each set

{Wn([wﬂ'rml)ylaz]}(?) | n e Z,’U) & Zf-n {ﬂ'),y,Z} C Z'U*f}

is of cardinalily 4 and so the total number of arcs of type (aq1,8) in blocks of the
form fwo, 1,4, #1]c is a multiple of 8. Therefore, such a system can have at most
one fixed point in blocks of this form, since under our hypotheses 1, contains only 8
arcs of type {ay, ). Therefore each remaining fixed point must be contained in some
block of the form [wg, 21, yo, z1]c (since cach arc of the form (ag,b;) is contained in
some block). However, such blocks contain two distinct fixed vertices. Therefore, the
cardinality of the set '

{“JO | Wy € V([w07$11y013110)1 {w, D‘} C Zf,{:E,Z} C Zu;f}
is even. This implies that the cardinality of the set
{wO | Wo = V([iuﬂaxl}yhzl]C))w € Zfl{:ﬂ'l? 13} C Zv—f}

is even. However as seen above, the cardinality of this set can be at most 1. Therefore,
the cardinality of this set must be 0, and all arcs of the type (a1, ;) must be contained
in blocks ol the form [w(, =z, 91,21]c. However, the only such admissible blocks are
{01, 11,21,31]c and [3,,2), 11, 0y]c, both of which are fixed under 7 and both of which
contain 4 arcs of the form (a;, b1). Under our hypotheses, D, contains 12 arcs of the
form (a,, b;), therefore such a system cannotl exist. L

Theorem 2.1 An f—cyclic 4—circuit decomposition of D, exists if and only if f =0
orl(modd), f#4,v=00r1(modd),v#4, andv—f>8 mthecase f=v=0
(mod 4).

Proof. The fact that a 4—circuit decomposition of I, exists only if v =0 or I (mod
4), v # 4, along with Lemma 2.1, give the necessary congruence conditions on » and
. The necessity of v > f + 8 for f = v = 0 (mod 4} is given in Lemma 2.2. These
conditions are shown to be sufficient in the following four cases. '
Case 1. Suppose f =0 (mod 4), f #4,v =0 (mod 4), v # 4, and v > [ + & Say
v~ [ = 4t. Consider the blocks:

(01,4, +2i — 1), (t+2—1)]e fori=2,3,...,t =1,

[(20)0, 01, (2 + 1)o, iJe fori =1,2,..., f/2 — 1.

[Olatla (zt)h (3t)l]Ca [01! Ly, (Zt)la (Qt + I)I]C:

[09, 11,(2t + 1)1, (f + 1)1]0, and [10,01, (Zt + 1)1, (2t)1]c
Case 2. Suppose f = 0 (mod 4), f # 4, v = | (mod 4) and v > [ + & Say
v — [ =4t — 1. Consider the blocks:

[(2¢}9, 00, (22 + 1)g, L1]c forz =0,1,..., f/2 -1,

and the blocks for a cyclic 4—circuit decomposition of D,_; on the vertex set

{00,5,. (v = f = 1)},
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Case 3. Suppose f = 1 (mod 4) and v = 0 (mod 4), v # 4 and v > f + 8. Say
v — f =4t — 1. Consider the blocks:

[04, (L -+ 20)1, (3 +4i), (2 + 2i)y)c for i = 0,1,... £ — 3,

[(3+ 26)0, 01, (4 + 2i)o, L] for 7= 0,1,...,(f — 5)/2,

[00, 01, (2¢ — 3)y1, (4¢ — 3)1]c, (Lo, 01, (2¢ — 2}y, (4t — 3)4]c and (20,04, {2¢ - 1)1, 44])c.
Case 4. Suppose f =1 (mod 4) and v = 1 (mod 4) and v > f + 8. Say v — [ = 41.
Consider the blocks: '

01,20, (t+ 201, (L +iy)e fori=1,2,...,t — 1,

(24 = L), 01, (24)0, Lo for i = 1,2,...,(f — 1)/2,

[01 y tl, (215)1, (315)1]0, and [Oo, 01, ('Zt)l, tl]C-

In each case, these blocks, along with their images under the permutation (0o)(Lo) - -~
(f = 1o(01,14,...,{v — f —1},) and the blocks for 4 4—circuit decomposition of D,
on the vertex set {0, lo,...,(f — 1)o}, form an f—cyclic 4—circuit decomposition of

D,. R
Lemma 2.3 An f—cyclic X —decomposition of D, satisfics the condition v > 3f + 1.

Proof. First, we observe that it is impossible for such a decomposition to con-
tain a block of the form [wo,z1,y0,2|x. Applying 7% vields [ (we ), w577 (1),
T (Yo )y 757 (21)]x = [wo, 777 (1), yo. Z1]x, & contradiction since these are distinct
blocks which both contain the arc (wp,z;). Similarly, such a decomposition cannot
contain blocks of the form [wy, zo, 1, 20]x. Therefore by Lemma 2.1, for each fixed
point wo, we have wy € V(gu,) for some gy, where V{(gu,) = {wo,z1,51,21}. Let
Swo = U A(‘]r”(gwo)) and
ned
S = LJ S+

{wolwo€{0p,l0,....(f-1)0}}

Now, there are (v — f)(v — f — 1) arcs of the form (a;,8) in A(D,) and there arc
2f(v—f) arcs of this form in §. So it is necessary that (v — f){(v—f—1) > 2f(v -,
or that v > 3f + 1. B

‘Theorem 2.2 An f-cyclic X —decomposition of D, exists if and only if v > 3f + 1
and either f =0 (mod 4) and v =1 (mod 4), v # 5, or f = 1 (mod 4), f £ 5, and
v =0 (mod 4). :

Proof. As seen in the proof of Lemima 2.3, each block of such a decomposition must
be of one of the following forms: [wy, 20, Yo, z0lx, [w1, o, ¥1, 21)x, [wi, z1, Y0, 21)x
or [wi,z1,y1,21)x. Now, the cardinality of the sets {x"([w;,xo,y1, z1lx) | n €
2} {r™([wi, 21, y0,21]x) | n € Z} and {x"([wq, 21,51, 21]x) | n € &)} are each (v — f).
Since each of these blocks contains an even number of arcs of the type (ay,b6,), it
must be that the total number of such arcs is an even multiple of (v — f)}. However,
there are (v~ f)(v — f — 1) arcs of this type in A(D,), and so it is not possible that
f = v (mod 4). This condition, along with Lemmas 2.1 and 2.3 and the conditions
for the existence of a X —decomposition of D, gives the necessary conditions for the
existence of a f—cyclic X —decomposition of D,. We now establish sufficiency in the
following four cases:

Case 1. Suppose f =1 (mod 4), f # 5, v = 0 (mod 4), v — f = 7 (mod 8), and
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v>3f+1 Sayv— f=8t—1. Consider the blocks:
(00, (1 + )i, (624 20),, (20 i)}y for i = (f — 1)/2,(f - 1)/2+1,...,4 =1 (omit
ife < (f+1)/2,
(01, (¢ + 1 4+2)1, (8L + 2¢)y, (58 — 1+ i) ]x for i = max{0,(f — 1)/2 — ¢}, max{0,(f -
1)/2 ¢t} 4+ 1,...,¢t =2 (omit if 2t < (f -+ 3)/2), '
(01, (1 + )o, (6t + 20}y, (2t + 2)y]x for i =0,1,...,min{t - 1,(f —~1)/2 — 1},
[0y, (min{t +1,(f = 1)/2+ 1} + 2o, (2t + 1)1, (1 + ih)x for i =0,1,... ,min{t ~
11(f“ 1)/2_ l})
(04, (2 4+ 1+ )0, (88 + 20)y, (51 — 1 + )]y for i = 0,1,...,(f —1)/2 — 1 — L (omil
if (f—1)/2—1t<1),
(00, (f = D)/2+t+ L Fi)o, (264 1)y, (E+ L+ ihfx for i =0,1,...,(f-1)/2—-t—1
(omit if (f —1)/2 —{ < 1), and
(6t — 1)1,00,0y, (6t — 2)1] x.
Case 2. Suppose [ = 1 {(mod 4), f # 5, v = 0 (mod 4), v — [ = 3 (mod 8), and
v>3f +1. Say v — f =8+ 3. Consider the blocks:
[0, (1481, (6t +4 420, (2t +14+ih]x fors=(f-1)/4,(f—1)/4+1,... 11,
[011(t+l_l—z)l)(8t+4+23)17(5t+l+?’)1]1\’ fori= (fﬁl)/4:(fﬁ1)/4+l11t“la
(01, (1 +2)o, (61 +4 4 2¢)y, (2t + 1 4-8)y)x for 2 =0,1,...,(f —1)/4 -1,
[00, ((f ~ 1)/4 + L4 4)o, (1 + 2001, (5¢ + L+ )]x for i =0,1,...,(f - 1)/d -1,
00 ((F = 1)/2 41 4 i)or (24 D, (14 i) Toré = 0,1, (f — 1)/4 1,
00, (3(f — 1)/4+1+4)0, (2t + 1)1y (t+ L+i)]x fori=0,1,...,(f —1)/4 1, and
[11a00101)(6t+2)1])(-
Case 3. Suppose f = 0 (mod 4), v = 1 (mod 4), v # 5, v — f = 1 (mod 8), and
v>3f+1. Say v— f=8t+ 1. Consider the blocks:
(01, (1 4 2h, (66 + 2+ 200, (2t 4+ L4 i)y ]x foré = ff, fla+1,... L -1,
0L+ L+, +20:, 5+ 14+ )]x for = f/4,f/44+1,...,t -1,
(01, 20, (6 + 2 + 20}, (20 + 1+ 2)]x for 2 =0,1,..., f/4 — 1,
(00, (F/4 + 1oy (1 + 200, (5L + L+ 4)y|x for i =0,1,...,f/4—1,
(00,(F/2 4 D)o, (2¢ + D)1, (1 +inlx for i =0,1,..., /4 — 1, and
(01, (3f/4 4+ i), (2t + 1)1, (4 4+ 1+ 0)u)x for e =0,1,..., f/4 — L
Case 4. Suppose f = 0 (mod 4), v = 1 (mod 4), v # 5, v — f = 5 (mod 8), and
v>3f+ 1. Say v— f = 8t + 5. Consider the blocks:
(01,2 +4)1,11, (2t + 54 2e)]x for i = f/2, f/4+1,...,1 (omit if £ < f/2),
[01, (¢ 43 +2)1, 11, (44 + 8 + 22)y]x for ¢ = max{0, f/2 — 1 — L}, max{0, f/2 -1~
ty+ 1,0t =2 (omit if 26 < f/2 4+ 1),
(01,20, (34 22)1,(2+ ) ]x for e =0,1,...,min{¢, f/2 — 1},
[01, (min{t + 1, f/2} + )0, 11, (20 + 5+ 2i)1]x for e = 0,1,...,min{t, f/2 — 1},
[01,(28 + 24 2)o, (2t + 5+ 2¢)y,(E+ 3+ th]x for e =0,1,..., f/2 =t — 2 (omit if
fl2—1t<2), :
O, (f/2+ 141490, 11,(4t+ 8+ 2]x for i =0,1,..., f/2—t—2 (omit if
f/2—1t<2),and
[01, 11, (2¢ 4+ 3)1, (42 + 6)1]x.
In each case, these blocks, along with their images under the permutation (0g)(1lg) - -
(f — Do(01,14,...,(v— f—1})) and the blocks for a X —decomposition of D; on the
vertex set {0o, lo,...,(f = L)o}, form an f—cyclic X —decomposition of D,,. a

Theorem 2.3 An f—cyclic Y —decomposition of D, exists if and only if either f =0
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(mod 4), f#4, andv =1 (mod 4), v £#5 or f =1 (mod 1), [ #5, and v =0 (mod
4, v L4

Proof. By Lemma 2.1, cach arc of the form (a;, b;) must be contained in a block of
one of the following forms: [wy,zg, 3, 21y or w1, 21,91, 21]y. Now, the cardinality
of the sets {m"([wy, 2o, y1,21)y¥) | n € Z} and {7"([wi,z1, 3, 2]y) | n € Z) are both
(v—f). Since each of these blocks contains an even number of arcs of the form (aq, b),
it must be that the total number of such arcs is an even multiple of (v — f). However,
therc are (v — f){v — f — 1) arcs of this form in A(D,), and so it is not possible that
f = v (mod 4). This condition, along with Lemma 2.1 and the conditions for the
existence of a ¥ ~decomposition of D, gives the necessary conditions for the existence
of a f—cyclic ¥ —decomposition of D,. We now establish sufliciency in the following
two cases:
Case 1. Suppose f =1 (mod 4), f # 5, and v =0 (mod 4), v £ 4. Thenv — f =3
(mod 4}, say v — f =44 — 1. Consider the blocks:

(01, (1 +4)y, (42 = 3)y, (2t — L+ ih]y for i = (f = 1)/2,(f —1)/2+1,...,1 =2,

[01, (1 +2)o, (4t =31, (2t — L+ i)y fore=0,1,...,(f - 1)/2 -1

0, ((f = 1)/24 142, (46 = 3)1, (L +il]y forz=10,1,...,(f -1)/2—1, and

(11,00, (4L — 3)y, 04]y-
Case 2. Suppose f =0 (mod 4), f#4,and v =1 (mod 4), v # 5. Thenv — [ = |
(mod 4), say v — f = 4¢ + 1. Consider the blocks:

01, (1 +2)1, (40 — 1)1, (20 + L+ i)y fore = f/2—1,f/2,...,t -2,

(01,40, (4 — 1)1, (2t + L4 2),]y for i = 0,1,..., /2 2

(01,(f/2—1+4), (4 — L), (1 +i))y for e =0,1,..., f/2 — 2, and

(01, (2t — 1)1, (2t — 2)1, (4t — 1))y and [0, (f — 2)o, Ly, (f — Do)y
In either case, these blocks, along with their images under the permutation {0p)(1o) - -
(f —1)o(01,11,..., (v = f — 1)1) and the blocks for a Y- decomposition of D; on the
vertex set {0g, lo, ..., (f — 1)o}, form an f—cyclic Y —decomposition of D,. i

Theorem 2.4 An f—cyclic Z—decomposition of D, does nol caist,

Proof. Suppose that such a system exists. We observe that the system can contain
no blocks of the form [wy,z1,y1,21|z or [x1,wo,y1, 21]z, for applying #°~* to such
blocks leads to a contradiction, as in the proof of Lemma 2.3. So all arcs of the form
(a1, b1) must be contained v blocks ol the form [wy, x1,y1, 21)z. Therefore, there is a
cyclic subsystem of the given system of order (v — f). So v — [ =1 (mod 4). But by
Lemma 2.1, f = 1 (mod 4) and so v = 2 (mod 1), a contradiction.
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