# Reverse Directed Triple Systems

Rebecca Calahan-Zijlstra

Department of Mathematics and Statistics Middle Tennessee State University Murfreesboro, Tennessee 37312

Robert B. Gardner\*

Department of Mathematics East Tennessee State University Johnson City, Tennessee 37614

ABSTRACT. A directed triple system of order v and index  $\lambda$ , denoted  $DTS_{\lambda}(v)$ , is said to be reverse if it admits an automorphism consisting of v/2 transpositions when v is even, or a fixed point and (v-1)/2 transpositions when v is odd. We give necessary and sufficient conditions for the existence of a reverse  $DTS_{\lambda}(v)$  for all  $\lambda \geq 1$ .

### 1 Introduction

A directed triple system of order v and index  $\lambda$ , denoted  $DTS_{\lambda}(v)$ , is a v-element set X, of points, together with a set B, of ordered triples of elements of X, called blocks, such that any ordered pair of points of X occurs in exactly  $\lambda$  blocks of B. The notation [x, y, z] will be used for the block containing the ordered pairs (x, y), (x, z), and (y, z). Hung and Mendelsohn [6] introduced directed triple systems as a generalization of Steiner triple systems and showed that a  $DTS_1(v)$  exists if and only if  $v \equiv 0$  or 1 (mod 3). Seberry and Skillicorn [8] proved that a  $DTS_{\lambda}(v)$  exists if and only if  $\lambda v(v-1) \equiv 0 \pmod{3}$ ,  $v \neq 2$ .

An automorphism of a  $DTS_{\lambda}(v)$  is a permutation of X which fixes B. The *orbit* of a block under an automorphism  $\pi$  is the image of the block under the powers of  $\pi$ . A collection of blocks  $\beta$  is said to be a collection

<sup>\*</sup>Research supported by ETSU under RDC grant #94-105/M.

of base blocks for a  $DTS_{\lambda}(v)$  under the permutation  $\pi$  if the orbits of the blocks of  $\beta$  produce the  $DTS_{\lambda}(v)$ .

Several types of automorphisms have been explored in connection with the problem of determining the values v for which there are certain types of block designs of order v admitting the automorphism. In particular, a cyclic  $DTS_{\lambda}(v)$  admits an automorphism consisting of a single cycle of length v and exists if and only if [2, 4]:

- 1.  $\lambda \equiv 0 \pmod{6}$  and  $v \neq 2$ , or
- 2.  $\lambda \equiv 1$  or 5 (mod 6) and  $v \equiv 1$ , 4 or 7 (mod 12), or
- 3.  $\lambda \equiv 2 \text{ or } 4 \pmod{6}$  and  $v \equiv 1 \pmod{3}$ , or
- 4.  $\lambda \equiv 3 \pmod{6}$  and  $v \equiv 0, 1 \text{ or } 3 \pmod{4}$ .

A  $DTS_{\lambda}(v)$  which admits an automorphism consisting of a fixed point and k cycles of length (v-1)/k is said to be k-rotational. A k-rotational  $DTS_1(v)$  exists if and only if  $kv \equiv 0 \pmod{3}$  and  $v \equiv 1 \pmod{k}$  [1]. A 1-rotational  $DTS_{\lambda}(v)$  exists if and only if  $\lambda v \equiv 0 \pmod{3}$  and  $v \geq 3$  [3]. These two results, along with the observation that  $\lambda kv \equiv 0 \pmod{3}$  is a necessary condition for the existence of a k-rotational  $DTS_{\lambda}(v)$ , yield:

Corollary 1.1. A k-rotational  $DTS_{\lambda}(v)$  exists if and only if  $\lambda kv \equiv 0 \pmod{3}$ ,  $v \equiv 1 \pmod{k}$  and  $v \geq 3$ .

Steiner triple systems, denoted STS, have been extensively explored in connection with these types of questions. In particular, a reverse STS(v) admits an automorphism consisting of a fixed point and (v-1)/2 transpositions. A reverse STS(v) exists if and only if  $v \equiv 1$ , 3, 9 or 19 (mod 24) [5, 7, 9, 10]. With this result as motivation, we define a reverse  $DTS_{\lambda}(v)$  to be one admitting an automorphism consisting of a fixed point and (v-1)/2 transpositions if v is odd, or v/2 transpositions if v is even. The purpose of this paper is to use the above mentioned results along with some new constructions to give necessary and sufficient conditions for the existence of a reverse  $DTS_{\lambda}(v)$  for all  $\lambda \geq 1$ . We will take advantage of the fact that if there exists a  $DTS_{\lambda_1}(v)$  and a  $DTS_{\lambda_2}(v)$  both of which admit  $\pi$  as an automorphism, then there exists a  $DTS_{\lambda_1+\lambda_2}(v)$  admitting  $\pi$  as an automorphism.

# 2 Reverse Directed Triple Systems With $\lambda = 1$

In this section and the next section we will deal with reverse  $DTS_{\lambda}(v)$  on the set  $X = \{a, b\} \times \mathbf{Z}_{v/2}$  admitting the automorphism  $\pi = (a_0, b_0)(a_1, b_1) \cdots (a_{v/2-1}, b_{v/2-1})$ . We represent the ordered pair (x, y) as  $x_y$ .

**Lemma 2.1.** If a reverse  $DTS_{\lambda}(v)$  exists where v is even, then  $\lambda v(v-4) \equiv 0 \pmod{24}$ .

**Proof:** Each block of such a  $DTS_{\lambda}(v)$  must be of one of the following forms:

- 1.  $[a_i, a_j, a_k]$  or  $[b_i, b_j, b_k]$  where i, j, k are distinct,
- 2.  $[a_i, b_j, b_k]$  or  $[b_i, a_j, a_k]$  where  $j \neq k$ ,
- 3.  $[a_i, b_j, a_k]$  or  $[b_i, a_j, b_k]$  where  $i \neq k$ , or
- 4.  $[a_i, a_j, b_k]$  or  $[b_i, b_j, a_k]$  where  $i \neq j$ .

Let r be the number of blocks of type 1, s the number of type 2, t the number of type 3, and u the number of type 4. Notice that r, s, t and u are all even. The number of blocks in a  $DTS_{\lambda}(v)$  is  $\lambda v(v-1)/3$  so  $r+s+t+u=\lambda v(v-1)/3$ . In this  $DTS_{\lambda}(v)$  there is a total of  $\lambda v(v-2)/2$  pairs of the form  $(\alpha_i, \alpha_j)$  where  $\alpha \in \{a, b\}$ ,  $i \neq j$ . Blocks of the first type each contain 3 such pairs, blocks of the second, third and fourth types each contain 1 such pair. So  $3r+s+t+u=\lambda v(v-2)/2$ . So  $r=\lambda v(v-4)/12$  where r is even.

The conditions for the existence of a  $DTS_1(v)$  along with Lemma 2.1 imply that the necessary conditions for the existence of a reverse  $DTS_1(v)$  are  $v \equiv 0, 1, 3, 4, 7$ , or 9 (mod 12). We now show that these necessary conditions are sufficient.

**Theorem 2.1.** A reverse  $DTS_1(v)$  exists if and only if  $v \equiv 0, 1, 3, 4, 7$ , or 9 (mod 12).

Proof: For sufficiency, we present five cases.

Case 1. Suppose that  $v \equiv 1$  or 3 (mod 6). Then there exists a (v-1)/2-rotational  $DTS_1(v)$  by Corollary 1.1. This  $DTS_1(v)$  is clearly also reverse.

Case 2. Suppose that  $v \equiv 4 \pmod{12}$ . Then there exists a cyclic  $DTS_1(v)$  admitting an automorphism  $\alpha$  which consists of a single cycle of length v. The automorphism  $\alpha^{v/2}$  consists of v/2 transpositions and therefore this  $DTS_1(v)$  is also reverse.

Case 3a. Suppose that v = 24. Let  $\alpha$  be the permutation  $(a_0, a_1, \dots, a_9, b_0, b_1, \dots, b_9)$   $(a_{10}, a_{11}, b_{10}, b_{11})$ . Consider the blocks:

$$[\alpha^{j}(a_{10}), \alpha^{j}(a_{11}), \alpha^{j}(b_{11})]$$
 for  $j = 0, 1, 2, 3$ , and

 $[\alpha^{j}(a_{10}), \alpha^{j}(a_{1}), \alpha^{j}(a_{0})], [\alpha^{j}(a_{2}), \alpha^{j}(a_{0}), \alpha^{j}(a_{10})], [\alpha^{j}(a_{1}), \alpha^{j}(a_{10}), \alpha^{j}(b_{8})],$   $[\alpha^{j}(a_{3}), \alpha^{j}(a_{10}), \alpha^{j}(b_{9})], [\alpha^{j}(a_{0}), \alpha^{j}(a_{1}), \alpha^{j}(a_{8})], [\alpha^{j}(a_{0}), \alpha^{j}(a_{2}), \alpha^{j}(b_{5})],$   $[\alpha^{j}(a_{0}), \alpha^{j}(a_{3}), \alpha^{j}(b_{2})], [\alpha^{j}(a_{0}), \alpha^{j}(a_{4}), \alpha^{j}(b_{4})], [\alpha^{j}(a_{0}), \alpha^{j}(a_{5}), \alpha^{j}(b_{1})]$ for  $j = 0, 1, \ldots, 19$ .

These blocks form a collection of base blocks for a reverse  $DTS_1(24)$  under  $\pi$ .

Case 3b. Suppose that  $v \equiv 0 \pmod{24}$ ,  $v \neq 24$ . Let v = 24t,  $t \geq 2$ , and let  $\alpha$  be the permutation  $(a_0, a_1, \dots, a_{12t-3}, b_0, b_1, \dots, b_{12t-3})(a_{12t-2}, a_{12t-1}, b_{12t-2}, b_{12t-1})$ . Consider the blocks:

$$[\alpha^{j}(a_{12t-2}), \alpha^{j}(a_{12t-1}), \alpha^{j}(b_{12t-1})] \text{ for } j = 0, 1, 2, 3,$$

$$[\alpha^{j}(a_{12t-2}), \alpha^{j}(a_{1}), \alpha^{j}(a_{0})] \text{ and } [\alpha^{j}(a_{2}), \alpha^{j}(a_{0}), \alpha^{j}(a_{12t-2})]$$
for  $j = 0, 1, \dots, 24t - 5,$ 

$$[\alpha^{j}(a_{1}), \alpha^{j}(a_{12t-2}), \alpha^{j}(b_{12t-4})] \text{ for } j = 0, 1, \dots, 24t - 5,$$

$$[\alpha^{j}(a_{3}), \alpha^{j}(a_{12t-2}), \alpha^{j}(b_{12t-3})] \text{ for } j = 0, 1, \dots, 24t - 5,$$

$$[\alpha^{j}(a_{0}), \alpha^{j}(a_{1}), \alpha^{j}(a_{10t-2})] \text{ and } [\alpha^{j}(a_{0}), \alpha^{j}(a_{8t-3}), \alpha^{j}(b_{8t-5})]$$
for  $j = 0, 1, \dots, 24t - 5,$ 

$$[\alpha^{j}(a_{0}), \alpha^{j}(a_{4t-3}), \alpha^{j}(b_{4t-4})] \text{ for } j = 0, 1, \dots, 24t - 5,$$

$$[\alpha^{j}(a_{0}), \alpha^{j}(a_{8t-4-2i}), \alpha^{j}(b_{12t-7-i})] \text{ for } i = 0, 1, \dots, 4t - 3$$
and  $j = 0, 1, \dots, 24t - 5,$ 

$$[\alpha^{j}(a_{0}), \alpha^{j}(a_{8t-5-2i}), \alpha^{j}(b_{4t-5-i})] \text{ for } i = 0, 1, \dots, 2t - 2$$
and  $j = 0, 1, \dots, 24t - 5,$ 

$$[\alpha^{j}(a_{0}), \alpha^{j}(a_{4t-5-2i}), \alpha^{j}(b_{2t-4-i})] \text{ for } i = 0, 1, \dots, 2t - 4 \text{ and }$$
 $j = 0, 1, \dots, 24t - 5,$ 

These blocks form a collection of base blocks for a reverse  $DTS_1(v)$  under  $\pi$ .

Case 4. Suppose that  $v \equiv 12 \pmod{48}$ . Let v = 48t + 12. Consider the blocks:

$$[a_i, a_{8t+2+i}, a_{16t+4+i}] \text{ and } [a_{16t+4+i}, a_{8t+2+i}, a_i] \text{ for } i = 0, 1, \dots, 8t+1,$$

$$[a_i, a_{10t+2+i}, a_{14t+2+i}] \text{ for } i = 0, 1, \dots, 24t+5 \text{ (omit if } t = 0),$$

$$[a_i, a_{6t-2j+i}, a_{6t+2+2j+i}] \text{ for } i = 0, 1, \dots, 24t+5 \text{ and } j = 0, 1, \dots, t-1$$

$$(\text{omit if } t = 0),$$

$$[a_i, a_{10t-2j+i}, a_{10t+4+2j+i}]$$
 for  $i = 0, 1, \ldots, 24t + 5$  and  $j = 0, 1, \ldots, t-2$  (omit if  $t = 0$ ),

$$[a_i, a_{14t+4+2j+i}, a_{14t-2j+i}]$$
 for  $i = 0, 1, \ldots, 24t+5$  and  $j = 0, 1, \ldots, t-1$  (omit if  $t = 0$ ),

$$[a_i, a_{18t+6+2j+i}, a_{18t+4-2j+i}]$$
 for  $i = 0, 1, \ldots, 24t+5$  and  $j = 0, 1, \ldots, t-1$  (omit if  $t = 0$ ),

$$[a_i, b_{6t+1-j+i}, b_{6t+2+j+i}]$$
 for  $i = 0, 1, \ldots, 24t + 5$  and  $j = 0, 1, \ldots, 6t + 1$ ,  $[a_i, b_{18t+5+j+i}, b_{18t+4-j+i}]$  for  $i = 0, 1, \ldots, 24t + 5$  and  $j = 0, 1, \ldots, 6t$ .

These blocks form a collection of base blocks for a reverse  $DTS_1(v)$  under  $\pi$ .

Case 5. Suppose that  $v \equiv 36 \pmod{48}$ . Let v = 48t + 36. Consider the blocks:

$$[a_i, a_{8t+6+i}, a_{16t+12+i}]$$
 and  $[a_{16t+12+i}, a_{8t+6+i}, a_i]$  for  $i = 0, 1, \ldots, 8t + 5$ ,  $[a_i, a_{6t+5+i}, a_{10t+8+i}]$  for  $i = 0, 1, \ldots, 24t + 17$ ,

$$[a_i, a_{6t+3-j+i}, a_{6t+6+j+i}]$$
 for  $i = 0, 1, \ldots, 24t+17$  and  $j = 0, 1, \ldots, 2t-1$  (omit if  $t = 0$ ),

$$[a_i, a_{10t+7-j+i}, a_{10t+9+j+i}]$$
 for  $i = 0, 1, \ldots, 24t + 17$  and  $j = 0, 1, \ldots, 2t$ ,

$$[a_i, b_{12t+8+i}, b_{18t+12+i}]$$
 for  $i = 0, 1, \ldots, 24t + 17$ ,

$$[a_i, b_{22t+15+i}, b_{22t+16+i}]$$
 for  $i = 0, 1, \dots, 24t + 17$ ,

$$[a_i, b_{6t+4+j+i}, b_{6t+3-j+i}]$$
 for  $i = 0, 1, \ldots, 24t+17$  and  $j = 0, 1, \ldots, 6t+3$ ,

$$[a_i, b_{18t+13+j+i}, b_{18t+11-j+i}]$$
 for  $i = 0, 1, \ldots, 24t+17$  and  $j = 0, 1, \ldots, 4t+1$ ,

$$[a_i, b_{22t+17+j+i}, b_{14t+9-j+i}]$$
 for  $i = 0, 1, \ldots, 24t+17$  and  $j = 0, 1, \ldots, 2t$ .

These blocks form a collection of base blocks for a reverse  $DTS_1(v)$  under  $\pi$ .

# 3 Reverse Directed Triple Systems With $\lambda > 1$

Finally, we give necessary and sufficient conditions for the existence of a reverse  $DTS_{\lambda}(v)$  where  $\lambda > 1$ .

**Theorem 3.1.** A reverse  $DTS_{\lambda}(v)$ , where v is odd, exists if and only if  $\lambda v(v-1) \equiv 0 \pmod{3}$ . A reverse  $DTS_{\lambda}(v)$ , where v is even, exists if and only if  $\lambda v(v-1) \equiv 0 \pmod{3}$  and  $\lambda v(v-4) \equiv 0 \pmod{24}$ ,  $v \neq 2$ .

**Proof:** The necessary conditions follow from the conditions for the existence of a  $DTS_{\lambda}(v)$  along with Lemma 2.1. We show sufficiency in the following cases.

Case 1. Suppose that  $v \equiv 0, 1, 3, 4, 7$ , or 9 (mod 12). Then there exists a reverse  $DTS_1(v)$  by Theorem 2.1. Therefore there exists a reverse  $DTS_{\lambda}(v)$  for all  $\lambda \geq 1$ .

Case 2. Suppose that  $v \equiv 2 \pmod{12}$ . Then it is necessary that  $\lambda \equiv 0 \pmod{6}$ . In this case, there is a  $DTS_{\lambda}(v)$  admitting a cyclic automorphism  $\alpha$ . The automorphism  $\alpha^{v/2}$  consists of v/2 transpositions and therefore this  $DTS_{\lambda}(v)$  is also reverse.

Case 3. Suppose that  $v \equiv 5 \pmod{6}$ . Then there exists a (v-1)/2-rotational  $DTS_{\lambda}(v)$  by Corollary 1.1. This  $DTS_{\lambda}(v)$  is clearly reverse.

Case 4a. Suppose that v = 6. Consider the blocks:

$$[a_0, b_1, a_2], [a_1, b_2, a_0], [a_2, b_0, a_1], [a_1, a_0, b_0], [a_2, a_1, b_1],$$
  
 $[a_2, a_0, b_2], [b_1, a_0, a_1], [b_2, a_1, a_2], [b_0, a_2, a_0], \text{ and } [a_0, a_1, a_2].$ 

These blocks form a collection of base blocks for a reverse  $DTS_2(6)$ . Therefore there exists a reverse  $DTS_{\lambda}(6)$  for all  $\lambda \equiv 0 \pmod{2}$ .

Case 4b. Suppose that  $v \equiv 6 \pmod{24}$ ,  $v \neq 6$ , say v = 24t + 6,  $t \geq 1$ . Consider the blocks:

$$[a_{i}, a_{6t-j+i}, a_{6t+1+j+i}] \text{ for } i = 0, 1, \dots, 12t + 2 \text{ and } j = 0, 1, \dots, t - 1,$$

$$[a_{i}, a_{5t-j+i}, a_{7t+3+j+i}] \text{ for } i = 0, 1, \dots, 12t + 2 \text{ and } j = 0, 1, \dots, t - 2$$

$$(\text{omit if } t = 1),$$

$$[a_{i}, a_{2+2j+i}, a_{10t+3+j+i}] \text{ for } i = 0, 1, \dots, 12t + 2 \text{ and } j = 0, 1, \dots, 2t - 2,$$

$$[a_{i}, a_{7t+2+i}, a_{7t+1+i}] \text{ for } i = 0, 1, \dots, 12t + 2,$$

$$[a_{i}, a_{4t+1+i}, a_{8t+2+i}] \text{ and } [a_{i}, a_{8t+2+i}, a_{4t+1+i}] \text{ for } i = 0, 1, \dots, 8t + 1,$$

$$[a_{i}, b_{10t+3+j+i}, a_{8t+4+2j+i}] \text{ for } i = 0, 1, \dots, 12t + 2 \text{ and } j = 0, 1, \dots, 4t - 1,$$

$$[a_{i}, b_{2t+1+j+i}, a_{4t+2+2j+i}] \text{ for } i = 0, 1, \dots, 12t + 2 \text{ and } j = 0, 1, \dots, 2t - 1,$$

$$[a_{i}, b_{4t+1+j+i}, a_{8t+3+2j+i}] \text{ for } i = 0, 1, \dots, 12t + 2 \text{ and } j = 0, 1, \dots, 2t - 1,$$

$$[a_{i}, b_{6t+2+j+i}, a_{2+2j+i}] \text{ for } i = 0, 1, \dots, 12t + 2 \text{ and } j = 0, 1, \dots, 2t - 1,$$

$$[a_{i}, b_{8t+3+j+i}, a_{4t+3+2j+i}] \text{ for } i = 0, 1, \dots, 12t + 2 \text{ and } j = 0, 1, \dots, 2t - 1,$$

$$[a_{i}, b_{8t+3+j+i}, a_{4t+3+2j+i}] \text{ for } i = 0, 1, \dots, 12t + 2 \text{ and } j = 0, 1, \dots, 2t - 1,$$

$$[a_{i}, b_{4t+1+i}, b_{6t+2+i}] \text{ for } i = 0, 1, \dots, 12t + 2,$$

$$[a_{i}, b_{4t+1+i}, b_{6t+2+i}] \text{ for } i = 0, 1, \dots, 12t + 2,$$

$$[a_{i}, b_{4t+1+i}, b_{6t+2+i}] \text{ for } i = 0, 1, \dots, 12t + 2,$$

$$[a_{i}, b_{8t+2+i}, b_{6t+1+i}] \text{ for } i = 0, 1, \dots, 12t + 2,$$

$$[a_{i}, b_{8t+2+i}, b_{6t+1+i}] \text{ for } i = 0, 1, \dots, 12t + 2.$$

These blocks form a collection of base blocks for a reverse  $DTS_2(v)$ . Therefore there exists a reverse  $DTS_{\lambda}(v)$  for all  $\lambda \equiv 0 \pmod{2}$ .

Case 5. Suppose that  $v \equiv 8 \pmod{12}$ . Then it is necessary that  $\lambda \equiv 0 \pmod{3}$ . Under these conditions, there is a cyclic  $DTS_{\lambda}(v)$  and this  $DTS_{\lambda}(v)$  is also reverse by the argument of Case 2.

Case 6. Suppose that  $v \equiv 10 \pmod{12}$ . Then it is necessary that  $\lambda \equiv 0 \pmod{2}$ . Under these conditions, there is a cyclic  $DTS_{\lambda}(v)$  and this  $DTS_{\lambda}(v)$  is also reverse by the argument of Case 2.

Case 7a. Suppose that v = 18. Consider the blocks:

$$[a_i, a_{3+i}, a_{6+i}]$$
 and  $[a_i, a_{6+i}, a_{3+i}]$  for  $i = 0, 1, 2, 3, 4, 5$ , along with  $[a_i, a_{7+i}, a_{8+i}]$ ,  $[a_i, b_i, b_{1+i}]$ ,  $[a_i, b_{1+i}, b_{3+i}]$ ,  $[a_i, b_{2+i}, b_{6+i}]$ ,  $[a_i, b_{3+i}, b_{8+i}]$ ,  $[a_i, b_{5+i}, b_{4+i}]$ ,  $[a_i, b_{8+i}, b_{6+i}]$ ,  $[a_i, b_i, b_{4+i}]$ ,  $[a_i, b_{5+i}, b_{7+i}]$ , and  $[a_i, b_{2+i}, b_{7+i}]$  for  $i = 0, 1, \ldots, 8$ .

These blocks form a collection of base blocks for a reverse  $DTS_2(18)$ . Therefore there exists a reverse  $DTS_{\lambda}(18)$  for all  $\lambda \equiv 0 \pmod{2}$ .

Case 7b. Suppose that  $v \equiv 18 \pmod{24}$ ,  $v \neq 18$ , say v = 24t + 18,  $t \geq 1$ . Consider the blocks:

$$[a_i, a_{6t+3-j+i}, a_{6t+5+j+i}] \text{ for } i = 0, 1, \dots, 12t + 8 \text{ and } j = 0, 1, \dots, t-1,$$

$$[a_i, a_{5t+3-j+i}, a_{7t+7+j+i}] \text{ for } i = 0, 1, \dots, 12t + 8 \text{ and } j = 0, 1, \dots, t-2$$

$$(\text{omit if } t = 1),$$

$$[a_i, a_{10t+6-j+i}, a_{10t+9+j+i}] \text{ for } i = 0, 1, \dots, 12t + 8 \text{ and } j = 0, 1, \dots, 2t-1,$$

$$[a_i, a_{7t+5+i}, a_{7t+6+i}] \text{ for } i = 0, 1, \dots, 12t + 8,$$

$$[a_i, a_{6t+4+i}, a_{10t+8+i}] \text{ for } i = 0, 1, \dots, 12t + 8,$$

$$[a_i, a_{4t+3+i}, a_{8t+6+i}] \text{ and } [a_i, a_{8t+6+i}, a_{4t+3+i}] \text{ for } i = 0, 1, \dots, 8t + 5,$$

$$[a_i, b_{10t+8+j+i}, a_{8t+8+2j+i}] \text{ for } i = 0, 1, \dots, 12t + 8 \text{ and } j = 0, 1, \dots, 4t+1,$$

$$[a_i, b_{2t+2+j+i}, a_{4t+4+2j+i}] \text{ for } i = 0, 1, \dots, 12t + 8 \text{ and } j = 0, 1, \dots, 2t,$$

$$[a_i, b_{4t+3+j+i}, a_{8t+7+2j+i}] \text{ for } i = 0, 1, \dots, 12t + 8 \text{ and } j = 0, 1, \dots, 2t,$$

$$[a_i, b_{6t+5+j+i}, a_{2t+2j+i}] \text{ for } i = 0, 1, \dots, 12t + 8 \text{ and } j = 0, 1, \dots, 2t,$$

$$[a_i, b_{8t+7+j+i}, a_{4t+5+2j+i}] \text{ for } i = 0, 1, \dots, 12t + 8 \text{ and } j = 0, 1, \dots, 2t,$$

$$[a_i, b_{8t+7+j+i}, a_{4t+5+2j+i}] \text{ for } i = 0, 1, \dots, 12t + 8,$$

$$[a_i, b_{8t+6+i}, b_{6t+4+i}] \text{ for } i = 0, 1, \dots, 12t + 8,$$

$$[a_i, b_{4t+3+i}, b_{6t+4+i}] \text{ for } i = 0, 1, \dots, 12t + 8,$$

$$[a_i, b_{4t+3+i}, b_{6t+4+i}] \text{ for } i = 0, 1, \dots, 12t + 8,$$

$$[a_i, b_{4t+3+i}, b_{6t+5+i}] \text{ for } i = 0, 1, \dots, 12t + 8,$$

$$[a_i, b_{4t+3+i}, b_{6t+5+i}] \text{ for } i = 0, 1, \dots, 12t + 8,$$

$$[a_i, b_{4t+3+i}, b_{6t+5+i}] \text{ for } i = 0, 1, \dots, 12t + 8,$$

$$[a_i, b_{4t+3+i}, b_{6t+5+i}] \text{ for } i = 0, 1, \dots, 12t + 8,$$

$$[a_i, b_{4t+3+i}, b_{6t+5+i}] \text{ for } i = 0, 1, \dots, 12t + 8,$$

$$[a_i, b_{4t+3+i}, b_{6t+5+i}] \text{ for } i = 0, 1, \dots, 12t + 8,$$

These blocks form a collection of base blocks for a reverse  $DTS_2(v)$ . Therefore there exists a reverse  $DTS_{\lambda}(v)$  for all  $\lambda \equiv 0 \pmod{2}$ .

Theorem 3.1 gives a complete classification of reverse directed triple systems.

### References

- [1] C. J. Cho, Y. Chae and S. G. Hwang, Rotational directed triple systems, J. Korean Math. Soc. 24 (1987), 133-142.
- [2] C. J. Cho, Y. Han and S. Kang, Cyclic directed triple systems, J. Korean Math. Soc. 23 (1986), 117-125.
- [3] C. J. Colbourn, Automorphisms of directed triple systems, Bull. Austral. Math. Soc. 43 (1991), 257-264.
- [4] M. J. Colbourn and C. J. Colbourn, The analysis of directed triple systems by refinement, *Annals of Discrete Math.* 15 (1982), 97-103.
- [5] J. Doyen, A note on reverse Steiner triple systems, *Discrete Math.* 1 (1972), 315-319.
- [6] S. H. Y. Hung and N. S. Mendelsohn, Directed triple systems, J. Comb. Th. Ser. A 14 (1973), 310-318.
- [7] A. Rosa, On reverse Steiner triple systems, *Discrete Math.* 1 (1972), 61-71.
- [8] J. Seberry and D. Skillicorn, All directed BIBDs with k=3 exist, J. Comb. Th. Ser. A 29 (1980), 244-248.
- [9] L. Teirlinck, The existence of reverse Steiner triple systems, *Discrete Math.* 6 (1973), 301-302.
- [10] L. Teirlinck, A simplification of the proof of the existence of reverse Steiner triple systems of order congruent to 1 modulo 24, *Discrete Math.* 13 (1975), 297-298.