Optimal Packings and Coverings of the Complete Directed Graph with 3-Circuits and with Transitive Triples

Robert B. Gardner ¹
Department of Mathematics
East Tennessee State University
Johnson City, Tennessee 37614-0663 U.S.A.

Abstract. Maximal packings and minimal coverings of the complete directed graph with isomorphic copies of the directed graph d are studied in the cases of d being either of the two orientations of a 3-cycle. Necessary conditions are given which are shown to be sufficient through direct constructions.

1 Introduction

A maximal packing of a simple graph G with isomorphic copies of a graph g is a set $\{g_1, g_2, \ldots, g_n\}$ where $g_i \cong g$ and $V(g_i) \subset V(G)$ for all $i, E(g_i) \cap E(g_j) = \emptyset$ if $i \neq j$, $\bigcup_{i=1}^n g_i \subset G$, and

$$\left| E(G) \setminus \bigcup_{i=1}^n E(g_i) \right|$$

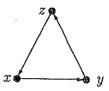
is minimal, where V(G) is the vertex set of graph G and E(G) is the edge set of graph G. Packings of the complete graph on v vertices, K_v , with graph g have been studied for g a 3-cycle [8], g a 4-cycle [9], $g = K_4$ [1], and g a 6-cycle [4,5].

A minimal covering of a simple graph G with isomorphic copies of a graph g is a set $\{g_1, g_2, \ldots, g_n\}$ where $g_i \cong g$ and $V(g_i) \subset V(G)$ for all $i, G \subset \bigcup_{i=1}^n g_i$, and

$$\left|\bigcup_{i=1}^n E(g_i) \setminus E(\widehat{G})\right|$$

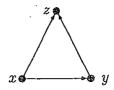
is minimal (the graph $\bigcup_{i=1}^{n} g_i$ may not be simple and $\bigcup_{i=1}^{n} E(g_i)$ may be a multiset). Coverings of K_v with graph g have been studied for g a 3-cycle [2], g a 4-cycle [9], and g a 6-cycle [6].

We define a maximal packing and a minimal covering of a simple directed graph in a way analogous to the case of undirected graphs. There are two orientations of the 3-cycle: the 3-circuit, C_3 , and the transitive triple T. We denote the 3-circuit



Research supported by ETSU under RDC grant #96-029/mjr.

by any cyclic shift of $[x, y, z]_C$ and we denote the transitive triple



by $[x, y, z]_T$. Denote the complete directed graph on v vertices as D_v . The purpose of this paper is to give necessary conditions for packings and coverings of D_v with isomorphic copies of C_3 and T. These necessary conditions are then shown to be sufficient through direct (as opposed to recursive) constructions.

2 The Packing Problem

If $\{d_1, d_2, \ldots, d_n\}$ is a packing of D_v with copies of d, then following the terminology of Kennedy [4] we define the directed graph $L = D_v - \bigcup_{i=1}^n d_i$ as the leave of the packing.

That is, the arc set of L is $A(L) = A(D_v) \setminus \bigcup_{i=1}^n A(d_i)$ and the vertex set of L is induced by A(L) (therefore L has no isolated vertices). A maximal packing of D_v with copies of d will therefore make |A(L)| minimal. In the event that |A(L)| = 0, it is said that D_v can be decomposed into copies of d. A decomposition of D_v into copies of C_3 exists if and only if $v \equiv 0$ or $1 \pmod 3$, $v \neq 6$ and such a decomposition is called a Mendelsohn triple system [7]. A decomposition of D_v into copies of T exists if and only if $v \equiv 0$ or $1 \pmod 3$ and such a decomposition is called a directed triple system [3]. Therefore, we need only consider the problem of packing D_v with copies of T (or copies of C_3) when $v \equiv 2 \pmod 3$ (and v = 6).

We first consider the question of packing D_v with copies of T. For brevity, we no longer make a distinction between graphs being "isomorphic" and "equal."

Theorem 2.1 A maximal packing of D_v with copies of the transitive triple T and leave L satisfies:

1.
$$|A(L)| = 0$$
 if $v \equiv 0$ or 1 (mod 3), or

2.
$$|A(L)| = 2$$
 and $L = C_2$ if $v \equiv 2 \pmod{3}$.

Proof. With $v \equiv 2 \pmod{3}$, $|A(D_v)| = v(v-1) \equiv 2 \pmod{3}$ and if we can demonstrate a packing where |A(L)| = 2, then it certainly must be maximal. Case 1. If $v \equiv 2 \pmod{12}$, say v = 12t + 2, then consider the set of triples:

$$\{[0,3t-i,3t+1+i]_T \mid i=0,1,\ldots,t-1\} \bigcup$$

$$\{[0,5t-i,5t+2+i]_T \mid i=0,1,\ldots,t-1\} \cup$$

$$\{[0,7t+2+i,7t-i]_T \mid i=0,1,\ldots,t-2\} \cup$$

$$\{[0,9t+1+i,9t-i]_T \mid i=0,1,\ldots,t-1\} \cup \{[0,x,5t+1]_T,[0,y,7t+1]_T\}.$$

Case 2. If $v \equiv 5 \pmod{12}$, say v = 12t + 5, then consider the set of triples: $\{[0,3t-i,3t+1+i]_T \mid i=0,1,\ldots,t-1\}$

$$\{[0,5t-i,5t+2+i]r \mid i=0,1,\dots,t-1\}$$

$$\{[0,5t-i,5t+2+i]_T \mid i=0,1,\ldots,t-1\} \bigcup$$

$$\{[0,7t+3+i,7t+1-i]_T \mid i=0,1,\ldots,t-1\} \cup$$

$$\{[0,9t+3+i,9t+2-i]_T \mid i=0,1,\ldots,t-1\} \cup \{[0,x,5t+1]_T,[0,y,7t+2]_T\}.$$

Case 3. If $v \equiv 8 \pmod{12}$, say v = 12t + 8, then consider the set of triples:

$$\{[0,3t+2-i,3t+3+i]_T \mid i=0,1,\ldots,t\}$$

$$\{[0,5t+3-i,5t+5+i]_T \mid i=0,1,\ldots,t-1\} \cup$$

$$\{[0,7t+6+i,7t+4-i]_T \mid i=0,1,\ldots,t-1\} \cup$$

$$\{[0,9t+6+i,9t+5-i]_T \mid i=0,1,\ldots,t-1\} \cup \{[0,x,5t+4]_T,[0,y,7t+5]_T\}.$$

Case 4. If $v \equiv 11 \pmod{12}$, say v = 12t + 11, then consider the set of triples:

$$\{[0,3t+2-i,3t+3+i]_T \mid i=0,1,\ldots,t\}$$

$$\{[0,5t+3-i,5t+5+i]_T \mid i=0,1,\ldots,t-1\} \cup$$

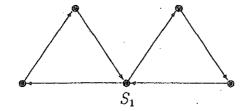
$$\{[0,7t+6+i,7t+4-i]_T \mid i=0,1,\ldots,t-1\} \cup$$

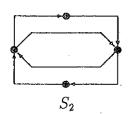
$$\{[0,9t+7+i,9t+6-i]_T \mid i=0,1,\ldots,t\} \cup \{[0,x,5t+4]_T,[0,y,7t+5]_T\}.$$

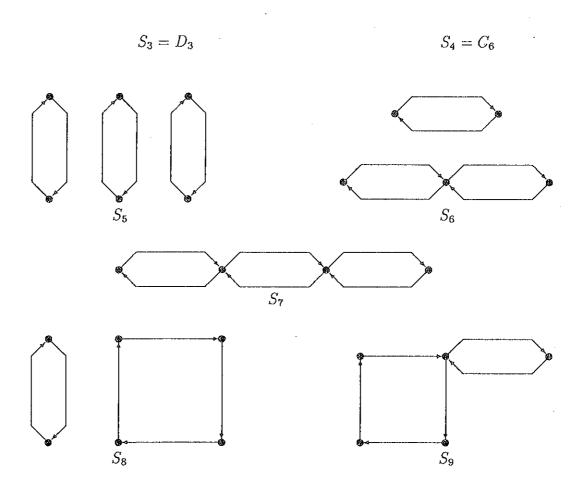
In each case, the given set of triples along with their images under the powers of the permutation $(x)(y)(0,1,\ldots,v-3)$ form a packing of D_v , where $V(D_v)=$ $\{x,y,0,1,\ldots,v-3\}$, with copies of C_3 and leave $L=C_2$, where $A(L)=\{(x,y),$ (y,x).

Finally, we note that the total-degree (i.e. the in-degree plus the out-degree) of each vertex of D_v is 2(v-1) and the total degree of each vertex of T is 2. So any packing of D_v with copies of T will have a leave L with each vertex of even total-degree. Therefore, an optimal packing must have $L = C_2$.

We now consider packing D_v with copies of C_3 . Since each vertex of D_v has indegree equal to out-degree and each vertex of C_3 has in-degree equal to out-degree, it must be that each vertex of a leave also has this property. The directed graph D_6 has 30 arcs. Therefore if L is a leave for a packing of D_6 with copies of C_3 , then $|A(L)| \equiv 0 \pmod{3}$. Since D_6 cannot be decomposed into copies of C_3 , $|A(L)| \neq 0$. If |A(L)| = 3, then it would be necessary for $L = C_3$, a contradiction. So if a packing of D_6 with copies of C_3 can be demonstrated with |A(L)| = 6, the packing will be maximal. There are nine directed graphs with six arcs in which in-degree equals out-degree for each vertex:







Since S_1, S_2 , and S_3 can each be decomposed into copies of $C_3, L \notin \{S_1, S_2, S_3\}$. Suppose that $L = S_6$ and $A(L) = \{(0,1), (1,0), (1,2), (2,1), (4,5), (5,4)\}$ where $V(D_6) = \{0,1,\ldots,5\}$. Then $[1,5,3]_C$ and $[1,4,3]_C$ must both be blocks of the packing of D_6 with copies of C_3 and leave $L = S_6$. However, this is clearly a contradiction since both triples contain the arc (3,1). Therefore $L \neq S_6$. In the following result, we show that L may be any of the directed graphs S_4, S_5, S_7, S_8, S_9 .

Lemma 2.1 A maximal packing of D_6 with copies of the 3-circuit C_3 and leave L satisfies |A(L)| = 6 and L may be any element of the set $\{S_4, S_5, S_7, S_8, S_9\}$.

Proof. Let $V(D_6) = \{0, 1, ..., 5\}$. Case 1. $L = S_4$.

Consider the set $\{[0,1,3]_C, [0,2,5]_C, [0,3,4]_C, [0,4,2]_C, [1,2,4]_C, [1,4,5]_C, [1,5,3]_C, [2,3,5]_C\}$. This is a packing of D_6 with copies of C_3 and leave $L = S_4$ where $A(L) = \{(5,4), (4,3), (3,2), (2,1), (1,0), (0,5)\}$. Case 2, $L = S_5$.

Consider the set $\{[0,1,3]_C, [0,2,4]_C, [0,3,2]_C, [0,4,1]_C, [1,4,5]_C, [1,5,3]_C, [2,3,5]_C, [2,5,4]_C\}$. This is a packing of D_6 with copies of C_3 and leave $L = S_5$ where $A(L) = \{(1,2), (2,1), (3,4), (4,3), (0,5), (5,0)\}$. Case 3. $L = S_7$.

Consider the set $\{[0,2,4]_C, [0,3,5]_C, [0,4,3]_C, [0,5,2]_C, [1,3,4]_C, [1,4,5]_C, [1,5,3]_C, [2,5,4]_C\}$. This is a packing of D_6 with copies of C_3 and leave $L = S_5$ where $A(L) = \{(0,1), (1,0), (1,2), (2,1), (2,3), (3,2)\}$. Case 4. $L = S_8$.

Consider the set $\{[1,3,2]_C, [2,3,4]_C, [4,3,5]_C, [5,3,1]_C, [0,1,4]_C, [0,2,5]_C, [0,4,1]_C, [0,5,2]_C\}$. This is a packing of D_6 with copies of C_3 and leave $L = S_5$ where $A(L) = \{(0,3), (3,0), (1,2), (2,4), (4,5), (5,1)\}$. Case 5. $L = S_9$.

Consider the set $\{[0,2,4]_C, [0,3,5]_C, [0,5,1]_C, [0,4,3]_C, [4,5,3]_C, [4,2,5]_C, [1,2,3]_C, [1,5,2]_C\}$. This is a packing of D_6 with copies of C_3 and leave $L = S_5$ where $A(L) = \{(0,1), (1,4), (4,1), (1,3), (3,2), (2,0)\}$.

Theorem 2.2 A maximal packing of D_v , where $v \neq 6$, with copies of the 3-circuit C_3 and leave L satisfies:

1.
$$|A(L)| = 0$$
 if $v \equiv 0$ or 1 (mod 3), $v \neq 6$, or

2.
$$|A(L)| = 2$$
 and $L = C_2$ if $v \equiv 2 \pmod{3}$.

Proof. The arguments of Theorem 2.1 again show that the theorem is proved if we can demonstrate a packing of D_v where $v \equiv 2 \pmod{3}$ such that $L = C_2$. Case 1. If $v \equiv 2 \pmod{6}$, say v = 6t + 2, then consider the set of triples:

$$\{[0,3t+i,6t-1-i]_C \mid i=0,1,\ldots,t-1\} \cup \\ \{[0,4t+1+i,t-1-i]_C \mid i=0,1,\ldots,t-2\} \cup \{[x,0,4t]_C,[y,0,5t]_C\}$$

Case 2. If $v \equiv 5 \pmod{6}$, say v = 6t + 5, then consider the set of triples:

$$\{[0, 2+i, 3t+2-i]_C \mid i=0, 1, \dots, t-1\} \cup$$

$$\{[0, 4t+4+i, t-i]_C \mid i=0, 1, \dots, t-2\} \cup \{[x, 0, 1]_C, [y, 0, 6t+2]_C\}$$

$$\cup \{[0, 4t+1, 2t]_C \text{(omit if } t=0)\}.$$

In each case, the given set of triples along with their images under the powers of the permutation $(x)(y)(0,1,\ldots,v-3)$ form a maximal packing of D_v where $V(D_v) = \{x,y,0,1,\ldots,v-3\}$ with copies of C_3 and leave $L = C_2$ where $A(L) = \{(x,y),(y,x)\}$.

Lemma 2.1 and Theorems 2.1 and 2.2 give necessary and sufficient conditions for the existence of maximal coverings of D_v with copies of T and C_3 .

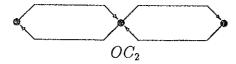
3 The Covering Problem

If $\{d_1, d_2, \ldots, d_n\}$ is a covering of D_v with copies of d, then we define the directed graph $P = \bigcup_{i=1}^n d_i - D_v$ as the padding of the covering (as with a leave, it is understood

that P has no isolated vertices; recall that $\bigcup_{i=1}^{n} d_i$ may not be simple). A minimal covering of D_v with copies of d will therefore make |A(P)| minimal. As discussed in Section 2, if d = T or $d = C_3$ then we need only consider $v \equiv 2 \pmod{3}$ and v = 6 if $d = C_3$.

Suppose $v \equiv 2 \pmod{3}$ and $d = C_3$. We see that $|A(P)| \equiv 1 \pmod{3}$. If $\{d_1, d_2, \ldots, d_n\}$ is a covering of D_v and |A(P)| = 1 with $A(P) = \{(x, y)\}$ where $d_1 = [x, y, z]_C$ (with x, y, z distinct), then $\{d_2, d_3, \ldots, d_n\}$ is a packing of D_v with copies of C_3 and leave L where $A(L) = \{(y, z), (z, x)\}$, contradicting Theorem 2.2. A similar argument shows that a covering of D_v with copies of T cannot have a padding P with |A(P)| = 1. In this section, we show that a minimal covering of D_v with $v \equiv 2 \pmod{3}$ and $d = C_3$ or d = T has a padding P satisfying |A(P)| = 4. We give direct constructions of such coverings for each possible form of P.

In Theorem 2.1 it is shown that the total degree of each vertex of the leave of a packing of D_v with C_3 or T is even. An analogous argument shows that the total degree of each vertex of the padding of a covering of D_v with C_3 or T is even. Therefore, if a padding P satisfies |A(P)| = 4 then P is either two disjoint copies of C_2 , an orientation of a 4-cycle, or two "osculating" C_2 s, which we denote as OC_2 :



Notice that there are four orientations of the 4-cycle. We denote the 4-circuit as C_4 and the other orientations we denote as:

We now show that for a covering of D_v with copies of T where $v \equiv 2 \pmod{3}$, each of these paddings is possible.

Theorem 3.1 A minimal covering of D_v with copies of the transitive triple T and padding P satisfies:

- 1. |A(P)| = 0 if $v \equiv 0$ or 1 (mod 3), or
- 2. |A(P)| = 4 if $v \equiv 2 \pmod{3}$ and P may be two disjoint copies of C_2 , any orientation of a 4-cycle, or two osculating 2-circuits OC_2 .

Proof. If $v \equiv 0$ or 1 (mod 3), then there exists a decomposition of D_v into copies of T [3]. So suppose that $v \equiv 2 \pmod{3}$. Then, as described above, $|A(P)| \geq 4$ and if we can demonstrate a covering with |A(P)| = 4 then it must be minimal. Also as described above, the only possible forms for P are those listed in the theorem.

Case 1a. v = 8 and P is two disjoint C_{25} .

Consider the set of triples $\{[0,5,4]_T, [4,5,0]_T, [0,1,4]_T, [4,1,0]_T, [1,3,5]_T, [5,7,1]_T, [1,6,5]_T, [5,2,1]_T, [7,4,6]_T, [6,4,3]_T, [3,4,2]_T, [2,4,7]_T, [6,0,7]_T, [3,0,6]_T, [2,0,3]_T, [7,0,2]_T, [6,1,2]_T, [2,5,6]_T, [7,5,3]_T, [3,1,7]_T\}$. This set is a minimal covering of D_8 where $V(D_8) = \{0,1,\ldots,7\}$ with copies of T and padding P where $A(P) = \{(0,4), (4,0), (1,5), (5,1)\}$.

Case 1b. $v \equiv 2 \pmod{6}$, $v \neq 8$, and P is two disjoint C_2 s.

Let v = 6t + 2 where $t \ge 2$. Consider the set of triples:

$$\{ [0, 3t - 4 - i, 3t - 3 + i]_T \mid i = 0, 1, \dots, t - 2 \} \cup$$

$$\{ [0, 5t - 7 - i, 5t - 5 + i]_T \mid i = 0, 1, \dots, t - 3 \} \cup$$

$$\{ [0, a, 5t - 6]_T, [0, b, 6t - 7]_T, [0, c, 6t - 6]_T, [0, d, 6t - 5]_T, [0, e, 6t - 4]_T \} \cup$$

$$\{ [a, b, e]_T, [e, b, a]_T, [e, c, a]_T, [a, d, e]_T, [d, a, c]_T, [c, e, d]_T, [d, b, c]_T, [c, b, d]_T \}.$$

The given set of triples along with their images under the powers of the permutation $(a)(b)(c)(d)(e)(0,1,\ldots,v-6)$ form a minimal covering of D_v where $V(D_v) = \{a,b,c,d,e,0,1,\ldots,v-6\}$ with copies of T and padding P where $A(P) = \{(a,e),(e,a),(c,d),(d,c)\}$.

Case 1c. $v \equiv 5 \pmod{6}$ and P is two disjoint C_2 s.

Let v = 6t + 5. Consider the set of triples:

$$\{[0, 3t - 3 - i, 3t - 2 + i]_T \mid i = 0, 1, \dots, t - 2\} \cup$$

$$\{[0, 5t - 5 - i, 5t - 3 + i]_T \mid i = 0, 1, \dots, t - 2\} \cup$$

$$\{[0, a, 5t - 4]_T, [0, b, 6t - 4]_T, [0, c, 6t - 3]_T, [0, d, 6t - 2]_T, [0, e, 6t - 1]_T\} \cup$$

$$\{[a, b, e]_T, [e, b, a]_T, [e, c, a]_T, [a, d, e]_T, [d, a, c]_T, [c, e, d]_T, [d, b, c]_T, [c, b, d]_T\}.$$

As in Case 1b, the result follows.

Case 2. $v \equiv 2 \pmod{3}$ and $P = C_4$.

We know that there exists a packing of D_v with copies of T with leave $L = C_2$ by Theorem 2.1. Say $A(L) = \{(x,y),(y,x)\}$. Then let w and z be two vertices of D_v distinct from x and y. We can take this packing of D_v along with $[x,w,y]_T$ and $[y,z,x]_T$ to produce a covering of D_v with padding P and $A(P) = \{(x,w),(w,y),(y,z),(z,x)\}$. Case 3. $v \equiv 2 \pmod{3}$ and P = X.

We can take a packing of D_v with copies of T as described in Case 2 and add $[x, w, y]_T$ and $[y, x, z]_T$ to produce a covering of D_v with padding P and $A(P) = \{(x, w), (w, y), (y, z), (x, z)\}.$

Case 4. $v \equiv 2 \pmod{3}$ and P = Y.

We can take a packing of D_v with copies of T as described in Case 2 and add $[x, y, w]_T$ and $[z, y, x]_T$ to produce a covering of D_v with padding P and $A(P) = \{(x, w), (y, w), (z, y), (z, x)\}.$

Case 5. $v \equiv 2 \pmod{3}$ and P = Z.

We can take a packing of D_v with copies of T as described in Case 2 and add $[x,y,w]_T$ and $[y,x,z]_T$ to produce a covering of D_v with padding P and $A(P) = \{(x,w),(y,w),(y,z),(x,z)\}.$

Case 6. $v \equiv 2 \pmod{3}$ and $P = OC_2$.

Again, as in Case 2 we can find a packing of D_v with copies of T and leave L where $A(L) = \{(x,y),(y,x)\}$. Let z be a vertex of D_v distinct from x and y. We can take the packing along with $[x,z,y]_T$ and $[y,z,x]_T$ to produce a covering of D_v with padding P and $A(P) = \{(x,z),(z,x),(y,z),(z,y)\}$.

We now turn our attention to covering D_v with copies of C_3 . Since each vertex of D_v has in-degree equal to out-degree and each vertex of C_3 has in-degree equal to out-degree, it must be that each vertex of a padding also has this property. Therefore, the padding cannot be the orientations of the 4-cycle of X, Y, or Z. We show the other possible paddings are each attained for certain coverings.

Theorem 3.2 A minimal covering of D_v with copies of the 3-circuit C_3 and padding P satisfies

1.
$$|A(P)| = 0$$
 if $v \equiv 0$ or 1 (mod 3), $v \neq 6$,

2.
$$|A(P)| = 3$$
 and $P = C_3$ if $v = 6$, or

3. |A(P)| = 4 if $v \equiv 2 \pmod{3}$ and P may be two disjoint copies of C_2 , a 4-circuit, or two osculating 2-circuits OC_2 .

Proof. First, we consider the case v=6 and $P=C_3$. Since D_6 has 30 arcs and a decomposition of D_6 into copies of C_3 does not exist, a covering of D_6 with copies of C_3 satisfying |A(P)|=3 would be minimal. Also, since each vertex of P must satisfy in-degree equals out-degree, it is necessary that such a P be equal to C_3 . Let $V(D_6)=\{0,1,\ldots,5\}$. Consider the set $\{[0,1,3]_C,[0,2,5]_C,[0,3,4]_C,[0,4,2]_C,[1,2,4]_C,[1,4,5]_C,[1,5,3]_C,[2,3,5]_C,[0,2,1]_C,[2,4,3]_C,[0,5,4]_C\}$. This is a covering with $P=\{(0,2),(2,4),(4,0)\}$.

If $v \equiv 0$ or 1 (mod 3), $v \neq 6$, then there exists a decomposition of D_v into copies of C_3 [7]. So we now need only consider $v \equiv 2 \pmod{3}$.

Case la. v = 8 and P is two disjoint C_{28} .

Consider the set $\{[0,5,4]_C, [0,4,5]_C, [0,1,4]_C, [0,4,1]_C, [1,5,2]_C, [1,5,7]_C, [1,3,5]_C, [1,6,5]_C, [[4,6,7]_C, [4,3,6]_C, [4,7,2]_C, [4,2,3]_C, [0,7,6]_C, [0,6,3]_C, [0,2,7]_C, [0,3,2]_C, [1,2,6]_C, [2,5,6]_C, [1,7,3]_C, [3,7,5]_C\}$. This set forms a minimal covering of D_8 where $V(D_8) = \{0,1,\ldots,7\}$ with copies of C_3 and padding P where $A(P) = \{(0,4), (4,0), (1,5), (5,1)\}$.

Case 1b. $v \equiv 2 \pmod{6}$, $v \neq 8$, and P is two disjoint C_2 s. Let v = 6t + 2, $t \geq 2$, and let

$$J_1 = \{ [0, 2+i, 3t-1-i]_C \mid i = 0, 1, \dots, t-2 \}$$

$$K_1 = \{[0, 4t + i, t - 1 - i]_C \mid i = 0, 1, \dots, t - 3\}$$

$$L_1 = \{[0, 1, a]_C, [0, 4t - 3, b]_C, [0, 4t - 2, c]_C, [0, 4t - 1, d]_C, [0, 6t - 4, e]_C\}$$

$$M = \{ [a, b, e]_C, [a, e, b]_C, [a, e, c]_C, [a, d, e]_C, [a, c, d]_C, [c, e, d]_C, [b, c, d]_C, [b, d, c]_C \}.$$

The set of triples $J_1 \cup K_1 \cup L_1 \cup M$ along with their images under the powers of the permutation $(a)(b)(c)(d)(e)(0,1,\ldots,v-6)$ form a minimal covering of D_v , where $V(D_v) = \{a,b,c,d,e,0,1,\ldots,v-6\}$, with copies of C_3 and padding P where $A(P) = \{(a,e),(e,a),(d,c),(c,d)\}$.

Case 1c. $v \equiv 5 \pmod{6}$ and P is two disjoint C_2 s.

Let v = 6t + 5 and let

$$J_{2} = \{ [0, 3t + i, 6t - 1 - i]_{C} \mid i = 0, 1, \dots, t - 2 \}$$

$$K_{2} = \{ [0, 4t + 1 + i, t - 1 - i]_{C} \mid i = 0, 1, \dots, t - 2 \}$$

$$L_{2} = \{ [0, 4t, a]_{C}, [0, 5t, b]_{C}, [0, 4t - 1, c]_{C}, [0, t + 1, d]_{C}, [0, t, e]_{C} \}.$$

The set of triples $J_2 \cup K_2 \cup L_2 \cup M$, where M is as defined in Case 1b, demonstrates this case, as in Case 1b.

Case 2. $v \equiv 2 \pmod{3}$ and $P = C_4$.

We know that there exists a packing of D_v with copies of C_3 with leave $L = C_2$ by Theorem 2.2. Say $A(L) = \{(x,y),(y,x)\}$. Then let w and z be two vertices of D_v distinct from x and y. We can take the packing of D_v along with $[x,y,w]_C$ and $[y,x,z]_C$ to produce a covering of D_v with padding P and $A(P) = \{(x,z),(z,y),(y,w),(w,x)\}$. Case 3. $v \equiv 2 \pmod{3}$ and $P = OC_2$.

As in Case 2 we can find a packing of D_v with copies of C_3 and leave L where $A(L) = \{(x,y),(y,x)\}$. Let z be a vertex of D_v distinct from x and y. We can take the packing along with $[x,z,y]_C$ and $[x,y,z]_C$ to produce a covering of D_v with padding P such that $A(P) = \{(x,z),(z,x),(y,z),(z,y)\}$.

Theorems 3.1 and 3.2 give necessary and sufficient conditions for the existence of maximal packings of D_v with copies of T and C_3 , respectively.

References

- [1] A. E. Brouwer, Optimal packings of K_4 's into a K_n , J. Combin. Theory, Ser. A 26(3) (1979), 278-297.
- [2] M. K. Fort, Jr. and G. A. Hedlund, Minimal coverings of pairs by triples, *Pacific J. of Math.* 8 (1958), 709-719.
- [3] S. Hung and N. Mendelsohn, Directed triple systems, J. Combin. Theory Series A 14 (1973), 310-318.
- [4] J. A. Kennedy, Maximum packings of K_n with hexagons, Australasian J. Combin. 7 (1993), 101-110.
- [5] J. A. Kennedy, Maximum packings of K_n with hexagons: Corrigendum, Australasian J. Combin. 10 (1994), 293.
- [6] J. A. Kennedy, Two perfect maximum packings and minimum coverings of K_n with hexagons, Ph.D. dissertation, Auburn University, U.S.A. 1995.

- [7] N. Mendelsohn, A natural generalization of Steiner triple systems, Computers in Number Theory, eds. A. O. Atkin and B. Birch, Academic Press, London, 1971.
- [8] J. Schönheim, On maximal systems of k-tuples, Studia Sci. Math. Hungarica (1966), 363-368.
- [9] J. Schönheim and A. Bialostocki, Packing and covering of the complete graph with 4-cycles, Canad. Math. Bull. 18(5) (1975), 703-708.