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Abstract. Maximal packings and minimal coverings of the com-
plete directed graph with isomorphic copies of the directed graph d
are studied in the cases of d being either of the two orientations of
a 3--cycle. Necessary conditions are given which are shown to be
sufficient through direct constructions.

1 Introduction

A mazimal packing of a simple graph G with isomorphic copies of a graph g is a set
{91,92,...,9n} where g; ® g and V{(g,) C V(G) for all 4, E(g.) N E(g;) = 0 if 7 & §,

UQ;CG, and

1=1

5\ U £(s)
i=1

is minimal, where V() is the vertex set of graph  and E(G) is the edge set of graph '
. G. Packings of the complete graph on v vertices, K, with graph g have been studied

for g a 3-cycle [8], ¢ a 4-cycle [9], g = K, [1], and ¢ a 6-cycle [4,5].

A minimal covering of a simple graph G with isomorphic copies of a graph g is a

set {1,92,...,9n} where g; & g and V(g:) C V(G) for all i, G C lJ ¢:, and

=1

n

U E(g:) \ E(G)

=]

is minimal (the graph | J ¢; may not be simple and | ] E(g;) may be a multiset).

i==] i=
Coverings of K, with graph g have been studied for ¢ ; 3-cycle [2], g a 4-cycle {9],
and g a 6-cycle [6]. ,
We define a mazimal packing and a minimal covering of a simple directed graph
in a way analogous to the case of undirected graphs. There are two orientations of
the 3-cycle: the 3-circuit, C, and the transitive triple T'. We denote the 3-circuit
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" by any cyclic shift of [z,y, z]c and we denote the transitive triple

z y

by [z,y, 2)r. Denote the complete directed graph on v vertices as D,. The purpose
of this paper is to give necessary conditions for packings and coverings of [, with
isomorphic copies of 3 and T. These necessary conditions are then shown to be
sufficient through direct (as opposed to recursive) constructions.

2 The Packing Problem

If {d.dy,...,d,} is a packing of D, with copies of d, then following the terminology
of Kennedy [4] we define the directed graph L = D), U d; as the leave of the packing.

i=1

That is, the arc set of L is A(L) \U A(d;) and the vertex set of L is induced

by A(L) (therefore L has no isolated vertlces) A maximal packing of 1}, with copies
of d will therefore make |A(L)| minimal. In the event that |A(L)| = 0, it is said
that D, can be decomposed into copies of d. A decomposition of D, into copies of Ca
exists if and only if v = 0 or 1 (mod 3), v # 6 and such a decomposition is called a
Mendelsohn triple system {7]. A decomposition of D, into copies of T exists if and
only if v = 0 or 1 (mod 3) and such a decomposition is called a directed triple system
[3]. Therefore, we need only consider the problem of packing D, with copies of T (or
copies of C3) when v =2 (mod 3) (and v = 6). '

We first consider the question of packing D, with copies of T". For brevity, we no
longer make a distinction between graphs being “isomorphic” and “equal.”

Theorem 2.1 A mazimal packing of D, with copies of the transitive triple T and
leave L satisfies:

1. |A(L)| =0 tfv=0 or 1 (mod3), or
2. |A(L)| =2 and L = Cy if v = 2 (mod 3).
Proof. With v = 2 {mod 3), |A(D,)] = v(v—1) = 2 (mod 3) and if we can

demonstrate a pa,ckmg where |A(L)| = 2, then it certainly must be maximal.
Case 1. If v = 2 {mod 12), say v = 12¢ -+ 2, then consider the sct of triples:

{{0,3t —i,3t + 1+ ¢rf7=0,1,...,t = 1}U
{[0,5t —i,5¢ + 2+ )y |t =0,1,...,t -1} U
{[0,7¢+2+4,Tt~dr|i=0,1,...,t ~2}U
(0,9t +1 44,9t —dlz [ i=0,1,...,t = 1}U{[0,2,5¢ + )7, [0,, 7¢ + 1]z},
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Case 2. If v = 5 (mod 12), say v = 12¢ + 5, then consider the set of triples:
{[0,3t =4, 3t + 1 +dlr |i=0,1,...,t - 1}U
{[0,5t — 4,5t +2+¢r |t =0,1,...,t —1}U
{0,780+ 3+4,Tt+1—i]p |i=0,1,...,t —1}U
{(0,9t+344,9t +2~i]r |i=0,1,...,t - 1} U{[0, =, 5t + U, [0,y,7¢ -+ 2] 7).

Case 3. If v = 8 (mod 12), say v = 12¢ + 8, then consider the set of triples:

{0,3t +2 1,3t + 344y |7=0,1,...,¢}U

{{0,5t+3—4,5t+ 5+l [i=0,1,...,t — 1}

{0,704+ 640, Tt +4—d]r|i=0,1,...,t —1}U

{0,9+6+2,9+5—1r|t=0,1,... ¢~ 1}UA[G, 2,5t + 4]7, [0, y, Tt + 5]7).
Case 4. If v =11 (mod 12), say v = 12¢ + 11, then consider the set of triples:

{0,3t+2—-4,3t+3+1dr|i=0,1,...,¢}U

{(0,5¢ +3 ~ 4,5t +5+4)p [i=0,1,...,¢t -1}

{107t +6+4¢, 7t +4—dlp [4=0,1,...,t ~1}U

{[0,9 + 74429t +6—1i]r [i:0,1,...,t}U{[O,x,5t+4]T,[0,y,7t+5]T}.

In each case, the given set of triples along with their images under the powers
of the permutation (z)(y)(0,1,...,v ~ 3) form a packing of D,, where V(D,) =
{z,,0,1,...,v — 3}, with copies of C3 and leave L = (', where A(L) = {(z,y),
(y,2)}.

Finally, we note that the total-degree (i.e. the in-degree plus the out-degree)
of each vertex of D, is 2(v — 1) and the total degree of each vertex of 7" is 2. So
any packing of D, with copies of T" will have a leave I with each vertex of even
total-degree. Therefore, an optimal packing must have [ = C,. ¥

We now consider packing D, with copies of C3. Since each vertex of D, has in-
degree equal to out-degree and each vertex of C3 has in-degree equal to out-degree,
it must be that each vertex of a leave also has this property. The directed graph Dg
has 30 arcs. Therefore if L is a leave for a packing of Dg with copies of Cs, then .
|A(L)] = 0 (mod 3). Since Dg cannot be decomposed into copies of Cs, |A(L)| # 0.
If [A(L)] = 3, then it would be necessary for L = C, a contradiction. So if a packing
of Dg with copies of Cy can be demonstrated with {A(L)| = 6, the packing will be
maximal. There are nine directed graphs with six arcs in which in-degree equals
out-degrec for each vertex:
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Since 51, 52, and S3 can each be decomposed into copies of C3, L ¢ {51, 53, 53}
Suppose that L = S and A(L) = {(0,1),(1,0),(1,2),(2,1),(4,5),(5,4)} where
V(Dg) = {0,1,...,5}. Then [1,5,3]¢ and [1,4,3]c must both be blocks of the pack-
ing of Dg with copies of C5 and leave L = Sg. However, this is clearly a contradiction
since both triples contain the arc (3,1). Therefore L # Sg. In the following result,
we show that L may be any of the directed graphs Sy, Ss, 57, Ss, Ss.

Lemma 2.1 A mazimal packing of Dg with copies of the 3—circuit C3 and leave L
satisfies JA(L)| = 6 and L may be any element of the set {S4, 55, 57,58, Se}.

Proof. Let V(Dg) = {0,1,...,5}.
Case 1. L = 5.
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Consider the set {[0, 1, 3]¢, [0, 2,5]¢,10,3,4)c, 0,4, 2, (1,2,4]¢,11,4,5]¢, [1,5,3]¢,
[2,3,5]c}. This is a packing of Dg with copies of Cy and leave J, = S4 where A(L) =
{(5:4), (4,3), (3,2), (2,1),(1,0),(0,5)}.

Case 2, L = Ss. '

Consider the set {[0,1,3]¢, [0, 2, 4], [0,3,2]c, (0,4, 1]c, [1,4,5]c, (1, 3,3le, [2,3,5]c,
[2,5,4]c}. This is a packing of Dy with copies of C5 and leave [ = S5 where A(L) =
1(1,2),(2,1), (3,4), (4,3),(0,5), (5,0)}. ' |

Case 3. L = G, _
Consider the set {[0, 2, 4](;, [U, 3, 5](;', [0, 4, 3](;, [0, 5, 2]0, [1, 3, 4]0, [1, 4, 5](,', [l, 5, 3]0,
(2,5,4]c}. This is a packing of Dg with copies of C3 and leave I = S5 where A(L) =
{(0,1),(1,0), (1,2), (2,1),(2,3),(3,2)}.

Case 4, [ = Ss.

Consider the set {[1,3,2)¢, [2,3,4]¢, (4,3, 5)c, (5,3, e, 10,1,4]¢,[0,2,5]c, (0,4, 1]¢,
(0,5,2]c}. This is a packing of Dg with copies of C3 and leave L = Sy where A(L) =
{(0,3),(3,0), (1,2), (2,4),(4,5), (5,1)}.

Case 5. I, = S,.

Consider the set {[0,2,4]¢,(0,3,5], [0,5,1]¢, (0,4, 3], (4,5, 3]c, [4,2,5]c, {1,2,3]¢,
[1,5,2]c}. This is a packing of Dg with copies of s and leave L = Sy where A(L) =
{(0,1),(1,4), (4,1), (1,3),(3,2), (2,0)}.

Theorem 2.2 A mazimal packing of D,, where v # 6, with copies of the 3— circuit
Cs and leave L satisfies:

L A(L)| =0 ifv=0or1 (mod 3), v+ 6,0r
2. [A(L)| =2 and L=C, if v =2 (mod 3).
Proof. The arguments of Theorem 2.1 again show that the theorem is proved if we

can demonstrate a packing of D, where v = 2 (mod 3) such that I = C,.
Case 1. If v = 2 (mod 6), say v = 6¢ -+ 2, then consider the set of triples:

- {[0,3t 44,6t~ 1 ~i]¢ li=0,1,...,t -1}
04 +144t~1~de |i=0,1,...,t =2} U{[z, 0,486, [y, 0, 5]}
Case 2. If =5 (mod 6), say v = 6t + 5, then consider the set of triples:
{10,244,8t+2—dlo |i=0,1,...,t ~ 1} U
{04+ 444t —de|i=0,1,...,2 2} U{[z,0, )6, [4,0, 6¢ + 2o}
U{[0,4¢ -+ 1, 2¢)c (omit if ¢ = 0)}.

In each case, the given set of triples along with their images under the powers of
the permutation (z)(y)(0,1,...,v— 3) form a maximal packing of D, where V(Dy) =
{z,9,0,1,...,v—38} with copies of C5 and leave [, — Cy where A(L) = {(z,v), (v, a;)

Lemma 2.1 and Theorems 2.1 and 2.2 give necessary and sufficient conditions for the
existence of maximal coverings of D, with copies of T" and Cj.
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3 The Covering Problem

If {d1,da,...,dn} is a covering of D, with copies of d, then we define the directed
graph P = | ) d; — D, as the padding of the covering (as with a leave, it is understood

=1

that P has no isolated vertices; recall that U d; may not be simple). A minimal
1=1

covering of D), with copies of d will therefore make |A(P)| minimal. As discussed in

Section 2, if d = T or d = C3 then we need only consider v = 2 (mod 3) and v = 6 if

d = C3.

Suppose v = 2 (mod 3) and d = C3. We see that |A(P)[ = 1 (mod 3). If
{dr,ds,...,dy} is a covering of D, and |A(P)| = 1 with A(P) = {(z,%)} where
di = [z,y,2]c (with z, y, z distinct), then {da,ds,...,d.} is a packing of D, with
copies of C3 and leave I where A(L) = {(y, 2), (2, z)}, contradicting Theorem 2.2. A

- similar argument shows that a covering of D, with copies of T' cannot have a padding

P with |A(P)| = 1. In this section, we show that a minimal covering of D, with
v=2 (mod 3) and d = (3 or d = T has a padding P satisfying |A(P)| = 4. We give
direct constructions of such coverings for each possible form of P.

In Theorem 2.1 it is shown that the total degree of each vertex of the leave
of a packing of D, with C3 or T is even. An analogous argument shows that the
total degree of each vertex of the padding of a covering of D, with Cs or T is even.
Therefore, if a padding P satisfies |JA(P)| = 4 then P is either two disjoint copies of
C3, an orientation of a 4-cycle, or two “osculating” Cjs, which we denote as OCy:

X

OC,

Notice that there are four orientations of the 4-cycle. We denote the 4-circuit as Cy
and the other orientations we denote as:

X Y VA

We now show that for a covering of D, with copies of T where v = 2 (mod 3), each
of these paddings is possible.

Theorem 3.1 A minimal covering of D, with copies of the transitive triple T and
padding P satisfies:

1. JA(P)I=014v=0o0r1 (mod3), or
2. |A(P)| =4 ifv =2 (mod 3) and P may be two disjoint copies of Cy, any orien-

tation of a 4—cycle, or two osculating 2 —~ circuits OC,.
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Proof. If v = 0 or 1 (mod 3), then there exists a decomposition of D, into copies
of T' [3]. So suppose that v = 2 (mod 3). Then, as described above, |A(P)] > 4 and
if we can demonstrate a covering with |A(P)| = 4 then it must be minimal. Also as
described above, the only possible forms for P are those listed in the theorem.

Case la. v = 8 and P is two disjoint C,s.

Consider the set of triples {[0,5,4]r, [4,5,0]7,[0,1,4]7, (4, 1,07, [1,3,5]r,{5,7, 17,
(1,6, 8]z, (5,2, L]z, 7,4, 6], (6,4, 3]r, [3,4, 2], [2,4, T}z, [6, 0, Tl [3,0, 6]z, (2,0, 3},
[7,0,2]r, {6,1,2]7, [2,5,6]r,(7,5,3]7, [3,1,7)r}. This set is a minimal covering of Dg
where V(Dg) = {0,1,...,7} with copies of T and padding P where A(P) = {(0,4)
(4,0, (1,5), (5, 1)}.

Case 1b. v = 2 (mod 6}, v # 8, and P is two disjoint Cjs.

Let v = 6 + 2 where ¢t > 2. Consider the set of triples:

H

(0,3t —4— 4,8t =3 +ilr [i=0,1,...,¢ - 2}U

(00,5t ~7— 4,5t~ 544l [i=0,1,...,t~3}U

{[0,a,5¢ — 6]z, (05,6t — 7)7,[0, ¢, 6¢ — 6)r, {0, d, 6¢ ~ 5]7, [0, ¢, 6t — 4} } U
{[a,b,elz, e, b, alr, [e, ¢, alr, [a, d, e, [d, a, ], [e, e, dir, [d, byl [, b, d]r).

The given set of triples along with their images under the powers of the permuta-
tion (a)(b)(c)(d){(e)(0,1,...,v — 6) form a minimal covering of D, where V(D,) =
{a,b,¢,d,e,0,1, ..., v — 6} with copies of T and padding P where A(P) = {(a,e),
(e,a), (¢, d), (d, )},

Case lc. v = 5 (mod 6) and P is two disjoint Cls.

Let v = 6t + 5. Consider the set of triples:

{[0,3t =3 —4,3t—~2+ilp [ i =0,1,...,t — 2}

{[0,5¢ =5 —i,5t =3 +ilp [i=0,1,....1~2}J

{(0,a,5t — 4]z, [0, 5,6t — 4], [0, ¢, 6t — 37, 0, d, 6¢ — 2, [0, e, 6¢ — 1]z} U
{la, b, €|z, [e, b, alr, [e, ¢, alr, [a, d, e]r, [d, a, |7, [c, e, d]7, [d, b, cr, e, b, d]r}.

As in Case 1b, the result follows.

Case 2. v = 2 (mod 3) and P = (.

We know that there exists a packing of D, with copies of T° with leave [, = C, by
Theorem 2.1. Say A(L) = {(z,¥),(y,z)}}. Then let w and z be two vertices of D, dis-
tinct from z and y. We can take this packing of D, along with [z,w, y]r and [y, 2, z|r
to produce a covering of D, with padding P and A(P) = {(z,w), (w,y), (v, 2), (z,2)}.
Case 3. v = 2 (mod 3) and P = X,

We can take a packing of D, with copies of T as described in Case 2 and add
[#,w,y]r and [y,=,z]r to produce a covering of D, with padding P and A(P) =
{(z,w), (w,¥), (9, 2), (z,2)}.

Case 4, v=2(mod 3) and P =Y.

We can take a packing of D, with copies of 7' as described in Case 2 and add
[2,y,wly and [2,y,z]7 to produce a covering of D, with padding P and A(P) =
{(2,0), (5, 0), (59), ().

Case 5. v=2(mod 3) and P = Z.
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We can take a packing of D, with copies of 7' as described in Case 2 and add
[z,y,wlr and [y,z,z]s to produce a covering of D, with padding P and A(P) =
{(m,w),(y,w),(y,z), (w,z)}. '

Case 6. v = 2 (mod 3) and P = OC,. _

Again, as in Case 2 we can find a packing of D, with copies of 7" and leave I where
A(L) = {(z,9), (v,z)}. Let z be a vertex of D, distinct from z and y. We can
take the packing along with [z, z,y]; and [, 2, z]7 to produce a covering of D, with
padding P and A(P) = {("E:Z)! (2,2), (v, 2), (z9)}. B

We now turn our atiention to covering D, with copies of Cy. Since each vertex
of Dy has in-degree equal Lo out-degree and each vertex of Cs has in-degree equal to
out-degree, it must be that each vertex of a padding also has this property. Therefore,
the padding cannot be the orientations of the 4-cycle of X, Y, or Z. We show the
other possible paddings are each attained for certain coverings.

Theorem 3.2 A minimal covering of D, with copies of the 3—circuit Cs and padding
P satisfies

L. |A(P)|=01iv=0 orl (mod 3), v 6,
2. [A(P)| =3 and P=Cy ifv =6, or

3. JA(P)| =4 ¢f v = 2 (mod 3) and P may be two disjoint copies of C, a 4— circuil,
or two osculating 2 — circuits OC,.

Proof. First, we consider the case v = 6 and P = Cs. Since Dg has 30 arcs and a
decomposition of Dg into copies of Cy does not exist, a covering of Dg with copies of
Cs satisfying |A(P)| = 3 would be minimal. Also, since each vertex of P must satisfy
in-degree equals out-degree, it is necessary that such a P be equal to C3. Let V(Dg) =
{0,1,...,5}. Consider the set {10:1,3]¢,[0,2,5c,,[0,3,4c, 0,4, 2)c, [1, 2, 4)c,
(1,4, 5lc, [l, 5,3)¢, [2, 3,5)¢, [0, 2,1)e, (2,4, 3, [0, 9, 4]0}. This is a covering with P =
{(0,2),(2,4), (4,0)}.

Ifv=0o0r1(mod3), v 6, then there exists a decomposition of D, into copies
of C3 [7]. So we now need only consider v = 2 (mod 3).
Case la. v = 8 and P is two disjoint Cys.
Consider the set {[0, 5,4]¢, [0, 4, 5lc, (0,1,4]c, [0,4,1]¢, (1,5, 2lc,[1,5,7)c, (1, 3, 5)c,
[ls 6, 5]6‘: “41 6, 7]6‘: [4: 3, 6]01 [4:7: 2]6‘1 [4? 2, 3]01 [Oz 7, 6]6‘1 [01 6, 3]01 [0: 2, 7]0’ [01 3, 2]6’)
[1,2,6]c, {2,5,6]c, [1,7,3)c, [3, 7, 5]c}. This set forms a minimal covering of Dy where
V(Dg) = {0,1,...,7} with copies of C5 and padding P where A(P) = {(0,4), (4,0),
(1,5), (5,1)}.
Case 1b. v =2 (mod 6), v # 8, and P is two disjoint Cys.
Let v="6t+2,¢> 2, and let

J1 :{[0,2+i,3t|—~1-—i]0 lizo,l,...,t—Q}
Ky={[0,4t +14,t 11| f1=0,1,...,t—3)
Ll = {[O’I’Q]C’[O’th - B’b]c’[0’4t —2,6]0,[0,_4t—— lad}Ca[0:6t“4;€]C}
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M = {[a,b,¢]c, a, e, b, [a, e, ¢|c, [a,d, €]c, [a, ¢, d]c, [e, e, d]c, [b, ¢, dle, (b, d, ¢ ).

The set of triples JiJ KU L1 UM along with their images under the powers of the
permutation (a)(b)(c)(d)(e)(0,1,...,v — 6) form a minimal covering of D,, where
V{(D,) = {a,b,¢,d,¢,0,1,...,v 6}, with copies of C3 and padding P’ where A(P) =
{(a,e), (e, a), (d,¢), (¢, d)}.

Case lc. v=5 (mod 6} and P is two disjoint Csys.

Let v = 6¢ 4 5 and let

Jy={[0,3t +4,6t—-1—¢c|7=0,1,...,t =2}
Ky={[0,4t+1+4,t-1—1cli=0,1,...,¢—2}
Ly = {[0,4t, )¢, [0,5¢, blc, [0, 4t — 1, cle, [0,¢ -+ 1,d)c, [0, ¢, el }-

The set of triples Jo U K2l L, UM, where M is as defined in Case 1b, demonstrates
this case, as in Case 1b.

Case 2. v = 2 {mod 3) and P = Cj.

We know that there exists a packing of D, with copies of C5 with leave L = (), by
Theorem 2.2. Say A(L) = {(z,y),(y,2)}. Then let w and z be two vertices of D, dis-
tinct from z and y. We can take the packing of D, along with [z,y,w]|e and {y, z, #]¢
to produce a covering of D, with padding P and A(P) = {(z,2),(2,y), (v, w), (w,z)}.
Case 3. v = 2 {mod 3) and P = OC,.

As in Case 2 we can find a packing of I}, with copies of C; and leave L where
A(L) = {(z,y),(y,z)}. Let z be a vertex of D, distinct from = and y. We can
take the packing a.long with [z, 2,y]¢ and [z,y, z]c to produce a covering of D, W1th
padding P such that A(P) = {(z,2),(z,2),(¥,2),(2,9)}. :

Theorems 3.1 and 3.2 give necessary and sufficient conditions for the existence of
maximal packings of [}, with copies of T and Cf, respectively.
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