Bicyclic Decompositions of K_v into Copies of $K_3 \cup \{e\}$

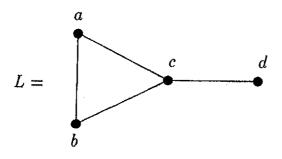
Robert B. Gardner

Department of Mathematics
East Tennessee State University
Johnson City, Tennessee 37614-0663, USA

ABSTRACT. A decomposition of the complete graph on v vertices, K_v , into copies of K_3 with a pendant edge is called a "lollipop" system of order v, denoted LS(v). We give necessary and sufficient conditions for the existence of a LS(v) admitting an automorphism consisting of two disjoint cycles. We also give a brief proof that the previously known sufficient conditions for the existence of a cyclic LS(v) are in fact necessary.

1 Introduction

A G-design on H is a set $\{g_1, g_2, \ldots, g_n\}$ of subgraphs of H (called blocks) such that $g_i \cong G$ for $i \in \{1, 2, \ldots, n\}$, $E(g_i) \cap E(g_j) = \emptyset$ for $i \neq j$, and $\bigcup_{i=1}^n E(g_i) = E(H)$. Notice that a G-design on H is equivalent to a G-decomposition of H. Several G-designs on the complete graph, K_v , have been explored. In particular, necessary and sufficient conditions are known for such designs for $G \in \{K_3, S_n\} \cup \{C_n \mid n \leq 50\}$ where S_n denotes a star on n+1 vertices and C_n denotes a cycle on n vertices (see, for example, [1, 5, 10]). We are particularly interested in L-designs of K_v when L is the following graph:



We denote L as given here by either (a, b, c) - d or (b, a, c) - d. Bermond and Schönheim proved that an L-design on K_v exists if and only if $v \equiv 0$ or 1

Utilitas Mathematica 54(1998), pp. 51-57

(mod 8) [2]. More generally, Hoffman and Kirkpatrick recently proved an L-design on λK_v exists if and only if $\lambda v(v-1) \equiv 0 \pmod 8$ [7]. Since the graph L is colloquially known as a "lollipop" [8], we refer to an L-design on K_v as a lollipop system of order v, denoted LS(v).

An automorphism of a G-design on H is a permutation of V(H) which fixes the set $\{g_1, g_2, \ldots, g_n\}$. Such an automorphism is said to be cyclic if it consists of a cycle of length |V(H)| and is said to be bicyclic if it consists of a cycle of length M and a cycle of length N where M + N = |V(H)|.

A K_3 -design of K_v is also known as a Steiner triple system of order v, denoted STS(v). A cyclic STS(v) exists if and only if $v \equiv 1$ or 3 (mod 6), $v \neq 9$ [9] and necessary and sufficient conditions for the existence of a bicyclic STS(v) are given in [3].

Bermond and Schönheim took advantage of "difference methods" in showing the existence of LS(v)s and proved that a cyclic LS(v) exists if $v \equiv 1 \pmod{8}$. We shall briefly show these conditions are, in fact, necessary. With the help of this result, we will then give necessary and sufficient conditions for the existence of a bicyclic LS(v).

2 Cyclic Designs

For cyclic LS(v)s, we assume that the vertex set of K_v is $\{0, 1, ..., v-1\}$ and that the cyclic automorphism is $\pi_c = (0, 1, ..., v-1)$.

Theorem 2.1 A cyclic LS(v) exists if and only if $v \equiv 1 \pmod{8}$.

Proof. Suppose there is a cyclic LS(v) where $v \equiv 0 \pmod{8}$. There must be some g_i in such a design which contains the edge (0, v/2). Applying $\pi_c^{v/2}$ to g_i , we see that (0, v/2) is an edge of $\pi_c^{v/2}(g_i)$ and therefore $\pi_c^{v/2}(g_i) = g_i$. However, this is impossible. Therefore $v \not\equiv 0 \pmod{8}$ and this, combined with the necessary condition for existence of a LS(v), gives the necessary condition. Sufficiency is given in [2].

3 Bicyclic Designs

Throughout this section, we assume the vertex set of K_v is $\{0_0, 1_0, \ldots, (M-1)_0, 0_1, 1_1, \ldots, (N-1)_1\}$ where M+N=v and we will construct LS(v)s admitting $\pi=(0_0, 1_0, \ldots, (N-1)_0)(0_1, 1_1, \ldots, (M-1)_1)$ as an automorphism. First we give necessary conditions for such a design.

Lemma 3.1 A bicyclic LS(v) admitting an automorphism consisting of a cycle of length M and a cycle of length N where M = N = v/2 does not exist.

Proof. Suppose there is such a system. There must be some g_i in such a design which contains the edge $(0_0, (v/4)_0)$ As in Theorem 2.1, $\pi^{v/4}(g_i) = g_i$. Therefore edge $(0_0, (v/4)_0)$ must be in a copy of L of the form $(0_0, (v/4)_0, c) - d$ for some vertices c and d. But then we need $\pi^{v/4}(c) = c$ and $\pi^{v/4}(d) = d$ and this is a contradiction since no vertices are fixed under $\pi^{v/4}$.

A subdesign of a G-design on K_v , $\{g_1, g_2, \ldots, g_n\}$, is a subset $\{g'_1, g'_2, \ldots, g'_M\}$ $\subset \{g_1, g_2, \ldots, g_n\}$ which is a G-design on some complete subgraph of K_v .

Lemma 3.2 If a bicyclic LS(v) exists which admits an automorphism consisting of a cycle of length M and a cycle of length N where M < N, and the design does not contain a cyclic subsystem of order M on the vertices $\{0_0, 1_0, \ldots, (M-1)_0\}$, then $v \equiv 9 \pmod{24}$ and N = 2M.

Proof. The automorphism π^M contains M fixed points. Suppose g_i is a block of such a design. We say an edge (x,y) is absolutely fixed by π if $\pi(x) = x$ and $\pi(y) = y$. Clearly if two or three edges of g_i are absolutely fixed under an automorphism, then all edges of g_i are absolutely fixed, and therefore all vertices of g_i are fixed under the automorphism. If exactly one edge of g_i is absolutely fixed under an automorphism, then the other three edges of g_i must be interchanged. This is only possible when $g_i = (a, b, c) - d$ where c and d are fixed and a and b are interchanged under the automorphism. Therefore, if some g_i of a bicyclic LS(v) has exactly one absolutely fixed edge under π^M (such a g_i exists under the hypothesis that the system does not contain a subsystem on the fixed points), it must be that π^M consists of M fixed points and N/2 transpositions. Therefore N = 2M and $v \equiv 0 \pmod{3}$, which implies $v \equiv 0$ or 9 (mod 24).

Now if $v \equiv 0 \pmod{24}$ then $M \equiv 0 \pmod{8}$ and some g_i in such a design contains the edge $(0_0, (M/2)_0)$. We see that g_i must be fixed under $\pi^{M/2}$, a contradiction.

Lemma 3.3 If $v \equiv 9 \pmod{24}$, then there exists a bicyclic LS(v) admitting an automorphism consisting of a cycle of length M and a cycle of length N where N = 2M and M + N = v.

Proof. Let v = 24k + 9, and so M = 8k + 3 and N = 16k + 6. We consider two cases based on the parity of k.

case 1. Suppose k is odd. Consider the set of blocks:

$$\{(4k+1)_1, (12k+4)_1, 0_0) - (4k+1)_0\}$$

$$\cup \{(0_0, (\frac{3k+3}{2})_0, (\frac{3k+1}{2})_0) - (4k+2)_0\}$$

$$\cup \{(0_0, (\frac{3k+5}{2}+i)_0, (\frac{3k-1}{2}-i)_0) - (\frac{9k+3}{2})_0 \text{ for } i = 0, 1, \dots, \frac{k-3}{2}\}$$

$$\cup \{(0_0, (\frac{5k+5}{2}+i)_0, (\frac{5k+1}{2}-i)_0) - (6k+2)_0 \text{ for } i = 0, 1, \dots, \frac{k-3}{2}\}$$

$$\cup \{(0_0, (4k-i)_1, (4k+2+i)_1) - (4k+3+3i)_1 \text{ for } i = 0, 1, \dots, 4k\}$$

case 2. Suppose k is even. Consider the set of blocks:

$$\{(4k+1)_1, (12k+4)_1, 0_0) - (4k+1)_0\}$$

$$\cup \{(0_0, (\frac{3k+2}{2})_0, (\frac{3k}{2})_0) - (4k+1)_0\}$$

$$\cup \{(0_0, (\frac{3k+4}{2}+i)_0, (\frac{3k-2}{2}-i)_0) - (\frac{9k+2}{2})_0 \text{ for } i = 0, 1, \dots, \frac{k}{2}-2\}$$

$$\cup \{(0_0, (\frac{5k+4}{2}+i)_0, (\frac{5k}{2}-i)_0) - (6k+1)_0 \text{ for } i = 0, 1, \dots, \frac{k}{2}-1\}$$

$$\cup \{(0_0, (4k-i)_1, (4k+2+i)_1) - (4k+3+3i)_1 \text{ for } i = 0, 1, \dots, 4k\}$$

In both cases, the set of blocks, along with the images of these blocks under the powers of π , form the desired design.

Notice that under π^M , the design given in Lemma 3.3 has M fixed points, yet there is not a subdesign on these fixed points. This is contrary to the behavior of several previously studied graph and digraph decompositions (such as Steiner triple systems [6], directed triple systems [11], and Mendelsohn triple systems [4]).

Lemma 3.4 If a bicyclic LS(v) exists which admits an automorphism π consisting of a cycle of length M and a cycle of length N where M < N and when π is restricted to $\{0_0, 1_0, \ldots, (M-1)_0\}$ we have a cyclic subsystem of order M on these points, then $M \equiv 1 \pmod{8}$ and N = kM where $k \equiv 7 \pmod{8}$.

Proof. Since there is a cyclic subsystem of order M, $M \equiv 1 \pmod{8}$ is necessary by Theorem 2.1. In such a design, there must be a block of one of the following forms: $(a_1, b_1, c_1) - d_0$, $(a_1, b_1, c_0) - d_1$, or $(a_0, b_1, c_1) - d_1$. The points of $\{0_1, 1_1, \ldots, (N-1)_1\}$ are fixed under π^N and so the images of these blocks are respectively $(a_1, b_1, c_1) - \pi^N(d_0)$, $(a_1, b_1, \pi^N(c_0)) - d_1$, and $(\pi^N(a_0), b_1, c_1) - d_1$. In each case, π^N must fix vertices of $\{0_0, 1_0, \ldots, (M-1)_0\}$ and so $M \mid N$. If N is an even multiple of M, then the edge $(0_1, (N/2)_1)$ must be in some block of the design, and again as in Theorem 2.1, we get a contradiction. Therefore N must be an odd multiple of M. This condition, along with the fact that $v = M + N \equiv 0$ or $1 \pmod{8}$, implies that N = kM where $k \equiv 7 \pmod{8}$.

We now show the necessary conditions of Lemmas 3.1, 3.2 and 3.4 are in fact sufficient.

Theorem 3.1 A bicyclic LS(v) admitting an automorphism consisting of a cycle of length M and a cycle of length N, where $M \leq N$, exists if and only if

(i) N = 2M and $v = M + N \equiv 9 \pmod{24}$, or

(ii)
$$M \equiv 1 \pmod{8}$$
 and $N = kM$ where $k \equiv 7 \pmod{8}$.

Proof. Sufficiency for (i) is given in Lemma 3.3. Therefore, we need only show sufficiency in (ii). We do so in two cases.

case 1. Suppose $M \equiv 1 \pmod{8}$ and $k \equiv 7 \pmod{16}$. Consider the set of blocks:

$$\left\{ \left(0_0, \left(\frac{M-5}{4} - i \right)_1, \left(\frac{M(2k-1)-1}{4} + i \right)_1 \right) - \left(\frac{M(4k-5)+5}{4} + 2i \right)_1 \right\}$$
for $i = 0, 1, \dots, \frac{M-5}{4}$

$$\bigcup \left\{ \left(0_0, \left(\frac{3M-7}{4} - i \right)_1, \left(\frac{M(2k+1)+1}{4} + i \right)_1 \right) - \left(\frac{M(4k-2)+6}{4} + 2i \right)_1 \right\}$$
for $i = 0, 1, \dots, \frac{M-5}{4}$

$$\bigcup \left\{ \left(0_1, \left(\frac{3M(k-2)+9}{16}\right)_1, \left(\frac{3M(k-2)+25}{16}\right)_1 \right) - \left(\frac{3M(k-6)+37}{16}\right)_0 \right\}$$

$$\bigcup \left\{ \left(0_{1}, \left(\frac{5M(k-2)+15}{16}\right)_{1}, \left(\frac{5M(k-2)+47}{16}\right)_{1}\right) - \left(\frac{5M(k-2)+39}{8}\right)_{1} \right\}$$

$$\bigcup \left\{ \left(0_1, \left(\frac{3M(k-2)-7}{16} - i \right)_1, \left(\frac{3M(k-2)+41}{16} + i \right)_1 \right) - \left(\frac{9M(k-2)+91}{16} + 2i \right)_1 \right\}
\text{for } i = 0, 1, \dots, \frac{M(k-2)-29}{16} \right\}$$

$$\bigcup \left\{ \left(0_1, \left(\frac{5M(k-2)-1}{16} - i \right)_1, \left(\frac{5M(k-2)+63}{16} + i \right)_1 \right) - \left(\frac{3M(k-2)+25}{4} + 2i \right)_1 \right\}
\text{for } i = 0, 1, \dots, \frac{M(k-2)-29}{16} \right\}.$$

case 2. Suppose $M \equiv 1 \pmod{8}$ and $k \equiv 15 \pmod{16}$. Consider the set of blocks:

$$\left\{ \left(0_0, \left(\frac{M-5}{4} - i \right)_1, \left(\frac{M(2k-1)-1}{4} + i \right)_1 \right) - \left(\frac{M(4k-5)+5}{4} + 2i \right)_1 \right\}$$
for $i = 0, 1, \dots, \frac{M-5}{4}$

$$\bigcup \left\{ \left(0_0, \left(\frac{3M-7}{4}-i\right)_1, \left(\frac{M(2k+1)+1}{4}+i\right)_1\right) - \left(\frac{M(2k-1)+3}{2}+2i\right)_1 \right\}$$

for
$$i = 0, 1, ..., \frac{M-5}{4}$$

$$\bigcup \left\{ \left(0_1, \left(\frac{3M(k-2)+17}{16}\right)_1, \left(\frac{3M(k-2)+33}{16}\right)_1 \right) - \left(\frac{3M(k-6)+45}{16}\right)_0 \right\}$$

$$\bigcup \left\{ \left(0_1, \left(\frac{5M(k-2)+23}{16}\right)_1, \left(\frac{5M(k-2)+55}{16}\right)_1\right) - \left(\frac{5M(k-2)+47}{8}\right)_1 \right\}$$

$$\bigcup \left\{ \left(0_1, \left(\frac{3M(k-2)+1}{16} - i \right)_1, \left(\frac{3M(k-2)+49}{16} + i \right)_1 \right) - \left(\frac{9M(k-2)+99}{16} + 2i \right)_1 \right\}$$
for $i = 0, 1, \dots, \frac{M(k-2)-21}{16}$

$$\bigcup \left\{ \left(0_1, \left(\frac{5M(k-2)+7}{16} - i \right)_1, \left(\frac{5M(k-2)+71}{16} + i \right)_1 \right) - \left(\frac{12M(k-2)+116}{16} + 2i \right)_1 \right. \\
\text{for } i = 0, 1, \dots, \frac{M(k-2)-37}{16} \right\}.$$

In both cases, the set of blocks, along with the images of these blocks under the powers of π and a set of blocks for a cyclic LS(M) on the point set $\{0_0, 1_0, \ldots, (M-1)_0\}$, form the desired design.

References

- [1] E. Bell, Decompositions of K_n into Cycles of Length at most Fifty, Ars Combin. 40 (1995) 49-58.
- [2] J. C. Bermond and J. Schönheim, G-Decompositions of K_n where G has Four Vertices or Less, *Discrete Math.* 19 (1977) 113-120.
- [3] R. Callahan and R. Gardner, Bicyclic Steiner Triple Systems, Discrete Math. 128 (1994) 35-44.
- [4] N. P. Carnes, Cyclic Antiautomorphisms of Mendelsohn Triple Systems, *Discrete Math.* **126** (1994) 29-45.
- [5] T. P. Kirkman, On a Problem in Combinatorics, Cambridge and Dublin Math. Journal 2 (1847) 191-204.
- [6] A. Hartman and D. Hoffman, Steiner Triple Systems with an Involution, Europ. J. Combin. 8 (1987) 371-378.
- [7] D. Hoffman and K. Kirkpatrick, G-Designs of Order n and Index λ where G has 5 Vertices or Less, submitted.
- [8] K. Kirkpatrick, personal communication.

- [9] R. Peltesohn, A Solution to Both of Heffter's Difference Problems (in German), Compositio Math. 6 (1939) 251-257.
- [10] S. Yamomoto, On Claw Decompositions of Complete Graphs and Complete Bigraphs, *Hiroshima Math. J.* 5 (1975) 33-42.
- [11] Z. Jiang and M. McLeish, Directed Triple Systems with a Class of Automorphisms, Ars Combin. 44 (1996) 229-239.