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Abstract. We present necessary and sufficient conditions for the de-
composition of the complete symmetric bipartite digraph into each of the
orientations of a 4--cycle {in the cases for which such decompositions are
not already known). We use these results to find optimal packings of the
complete symmetric digraph with each of the orientations of a 4—cycle.
Finally we give necessary and sufficient conditions for the existence of a
decomposition of the complete symmetric digraph on v vertices with a
hole of size w into each of the orientations of a 4—cycle.

1 Introduction

A mazimal packing of a digraph D with isomorphic copies of a digraph

dis a set {dy,dg, ..., d,} where d; & d and V(d;) ¢ V(D) for all 4,
A(d)NA(dy) =0 ifi# 4, | Jdi C D, and
i=1
ADN\UY A(di)‘
i=1

is minimal, where V(D) is the vertex set of digraph D) and A(D) is the
arc set of digraph D. A maximal packing of D with isomorphic copies of d
i

such that U d; = D is an isomorphic decomposition of D into copies of d
i=]

(or a “d—decomposition of D" for short). Packings and decompositions of

(undirected) graphs are similarly defined. Decompositions of the complete

graph on v vertices, K,, into cycles have been extensively studied (see [5]
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for a survey). Packings of the complete graph with isomorphic copies of a
graph g have been studied for g a 3-cycle [7], g a 4-cycle [9], g = K4 (1],
and g a 6-cycle [3, 4].

Let K(v,w) denote the complete graph on v wertices with a hole of
size w. Namely, K(v,w) has vertex set V(K{(v,w)) = V,, UVUMW where
|[Vo—w| =v —w and |V,,| = w and edge set

E(K(v,w)) = {(a,b) | @ # b,{a,b} C Vo | Vi and {a,b} ¢ V,,}

(the complete symmetric digraph on v vertices with a hole of size w,
D(v,w), is similarly defined). A 3-cycle decomposition of K(v,w) is a
Steiner triple system of order v with a hole of size w and the existence of
these designs is studied in [6].

There are four orientations of a 4-cycle:

b c b C b c

X Y A

and the 4—circuit. We denote these digraphs as [a, b, ¢, d]x, [a, b, ¢, d]y, and
[a, b, ¢, d] 7, respectively, we denote the 4—circuit with arcs (a, b), (b, ¢}, (¢, d)
and (d,a) as [a, b, ¢, d]c and we denote the complete symmetric digraph on
v vertices as D,. An X —decomposition of I, exists if and only if v == 0 or
I (mod 4), v # 5, a Y —decomposition of D, exists if and only if v = 0 or
1 (mod 4), v ¢ {4,5}, and a Z—decomposition of D, exists if and only if
v =1 (mod 4) [2]. A C4— decomposition of D, exists if and only if v =0
or 1 (mod 4), v # 4 [8].

The purpose of this paper is to give necessary and sufficient conditions
for the decomposition of the complete bipartite symmetric digraph, D, .,
into each of the orientations of a 4—cycle (in the cases where such de-
compositions are not already known). We will then use these results to
solve the problem of packing D, with each of the orientations of a 4—cycle.
Finally, we give necessary and sufficient conditions for the existence of a
decomposition of D(v,w) into each of the orientations of a 4—cycle.

2 Decompositions of D, ,

The following result is due to Sotieau [10]:
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Theorem 2.1 A C4—decomposition of Dy, n exists if and only if m,n > 2
and mn = 0 (mod 2).

We now give necessary and sufficient conditions for the existence of a
“d—decomposition of Dy, , where d € {X,Y}. Throughout this section, we
assume D, has partite vertex sets {0g, 1o,...,(m —1)o} and {01,11,...,

(TL - 1)1}

Theorem 2.2 An X —decomposition of D n exists if and only if either
m=n=0(mod?2) orm=1 (mod 2), m >3, and n =0 (mod 4).

Proof. Since D, , contains 2mn arcs and X contains 4 arcs, it is clearly
necessary that either m = 0 (mod 2) or n = 0 (mod 2).

Now suppose m = 2 (mod 4}, n = 1 (mod 2), and let V; and Vy
be the partite vertex sets of Dy, , where |Vi| = m and [V3| = n. If
there is an X —decomposition of Dy, n, say {X1,X2,..., Xz}, then z =
mn/2 =1 (mod 2). For each i € {1,2,...,%}, either X; = [ao, b1,co,d1]x
or X; = lay,bo,c1,do)x for some a,b,c,d. If X; = [ag,b1,co,d1]x then
od(by)+od(d;) = 1 (where od(b) is the out-degree of vertex b and id(b) is the
in-degree of vertex b) and if X; = [a1, bo, ¢1, do]x then od(a;)+od(er) = 3.
In either case, in X; the sum of the out-degrees of vertices in V2 is odd.
Since there are x = 1 (mod 2) isomorphic copies of X in such a decompo-
sition, it must be that the sum of out-degrees of all vertices in V5 is odd.
However, each vertex of V3 has out-degree m = 2 (mod 4), a contradiction.
Therefore such a decomposition does not exist.

Now if m =n =0 (mod 2), then the set

{1(24)0, (1 + 25)1, (1 + 280, (2)1)x, [(28)1, (1 -+ 25)o0, (1 + 22)1, (25)0] x

I € Zm/Zsj € Zn/Z}

forms such a decomposition.
Finally, suppose m = 1 (mod 2), m > 3, and n = 0 (mod 4). Then the

sel
{[(4d)1, 00, (43 + 1)1, Lo)x, [Lo, (43 + 1)1, 20, (4)1]x | i € Zinya}
U{[0, (42 -+ 31, 1o, (44 + 2)1])x, [(41 + 2)1, 20, (47 + 1)1, Oolx |1 € Zn/4}
U{[20, (43 + 2)1, Lo, (43 + 3)1]x, [(43 + 3)1,00, (4i)1, 20]x | & € Znya}

forms an X —decomposition of Dj ,,: Since Dy, can clearly be decomposed
into a copy of D3 ,, and a copy of Dpy—3,4, this result along with the fact that
an X --decomposition of D,,-.3 » exists as shown above (sincem—3=n=90

(mod 2)) yield the existence of an X —decomposition of Dipn- |
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Theorem 2.3 A Y —decomposition of Dy, ezists if and only if m,n > 2
and mn = 0 (mod 2).

Proof. As argued in Theorem 2.2, it is necessary that either m or n is
even. The case m = n = 0 (mod 2) is presented in [2]. So suppose m =1
(mod 2), m > 3, and n =0 (mod 2). Then the set '

{[00, (2'&)1, 10, (2Z + 1)1]y, [10, (2i)1,20, (2’& + 1)1]}/, ‘

[20, (21 + 1)1,00, (Qi)l]y | i € Zn/z}
forms a Y —decomposition of D3 . Asin the final case of Theorem 2.2, this

theorem follows. |
Finally, Z-decompositions of Dy, ,, were dealt with in {11}:

Theorem 2.4 A Z-—decomposition of Dy, n exists if and only ifm=mn:=0
(mod 2).

3 Packing D,

If {d1,ds,...,dn} is a packing of D, with copies of d, then following the
terminology of Kennedy (3, 4], we define the digraph I with arc set A(L) =
n

A(D N\ U A(d;) and vertex set induced by A(L), as the leave of the packing.

i=1 )
Therefore a maximal packing of D, minimizes |A(L)|. In this section, we

give necessary conditions on the structure of L for a maximal packing of
D, with copies of each of the orientations of a 4--cycle (we only consider
v > 4). We then show these necessary conditions are sufficient by presenting
a specific packing which minimizes |A(L)|. Throughout this section we

assume D), has vertex set Z,.

Theorem 3.1 An optimal packing of D, with copies of Cy and leave L
satisfies:

1. L=0ifv=0orl (modd), v 4,
2. |[A(L)| =4 if v=4,
3. L=D, ifv=2 or3 (mod 4).

Proof. If v = 0 or 1 (mod 4), v # 4, then there exists a Cs—decomposition
of D, [8] and the result follows.
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Now [A(Dy)| == 12 and a Cy—decomposition of D, does not exist, so a
packing of D4 with leave L where |A(L)! = 4 would be optimal. Consider
the packing {[0,1,2,3]c,[0,3,2,1c} and leave L = {(1,3),(3,1),(0,2),
(2,0}

 If v = 6, then we have the packing of Dg of {{0,1,4,2]c, [1,2,5,3]c,
0,2,3,4]c, [1,3,0,5]c, [2,1,0,3]c, [5,0,4,3)c, (2,4, 1, 5]c} with leave L =
{(4,5), (5,4)}.

If v =2 or 3 (mod 4), v > 7, then |A(D,)| =2 (mod 4). Each vertex
of D, has in-degree equal to out-degree and each vertex x of Cjy satisfies
id(z) = od(z) = 1. Thercfore the leave of a packing must have each vertex
with in-degree equal to out-degree. So a packing of D, with leave Dy would
be optimal. D, can clearly be decomposed into a copy of [),_3, a copy of
Dy..n3, and a copy of Dg. Since D,_3 can be decomposed into copies of
Cy4 [8], and Dy_z2 can be decomposed into copies of Cy by Theorem 2.1,

then D, can be packed with copies of Cy with a leave of L = Dy, I

Theorem 3.2 An optimal packing of D, with copies of X and leave L
satisfies:

1. L=0ifv=0 orl (mod4d), v#35,
9 |A(L)| =4 if v =5,
3. L =D, ifv=2 or3 (mod 4).

Proof. If v =0or 1 (mod 4), v # 5, then there exists an X —decomposition
of D, [2] and the result follows.

Now |A(Ds)| = 20 and an X —decomposition of Ds does not exist, so a
packing of Ds with leave I where |A(L)| = 4 would be optimal. Consider
the packing {[0,3,2,4]x, (1,4,2,3]x, [3,0,2,1]x, [4,1,2,0]x } and leave L =
{(3,4), (4,3),(0,1),(1,0)}.

If v = 2 or 3 (mod 4), then [A(D,)] = 2 (mod 4). Each vertex of D, has
total degree 2(v — 1) and each vertex of X has total degree 2. Therefore
the leave of a packing must have each vertex with even total degree. Soa

packing of D, with leae Dy would be optimal.
If v = 2 (mod 4), then D, can clearly be decomposed into a copy of

Dy .5, a copy of Dy_g 2, and a copy of D,. Since D,,..o can be decomposed
into copies of X [2], and D,_5 2 can be decomposed into copies of X by
Theorem 2.2, it follows that D, can be packed with copies of X with a

leave of L = D,
If v = 7, then we have the packing of D of {[0,3,5,4]x, [1,4,5,0]x,

12,0,5, 1]x, [3, 1, 5, 2x» [4,2,5,3]x, [4,6,3,00x, [0, 6,4, 1]x, [1,6,0,2]x, 2,
6,1,3]x, [3,6,2 4]X} with leaveL-— {(5, 6) (6,5)}.
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If v = 3 (mod 4), v > 11, then D, can clearly be decomposed into a
copy of Dy—7, a copy of D,_7~, and a copy of Dy. Since D,..7 can be
decomposed into copies of X [2], D,..7,7 can be decomposed into copies of
X by Theorem 2.2, and D¢ can be packed with copies of X with a leave of
D, as seen above, it follows that D, can be packed with copies of X with

a leave of L = D,

Theorem 3.3 An optimal packing of D, with copies of ¥ and leave L
satisfies:

1. L=0ifv=0o0r1 (mod4), v¢ {45}
2. |A(L)| = 4 if v € {4,5},
3. L=D; ifv=2o0r3 (mod4).

Proof. If v = 0 or 1 (mod 4), v ¢ {4,5}, then there exists a ¥ —decompo-
sition of D, [2] and the result follows.

As in Theorems 3.2 and 3.3, packings of D,, where v € {4,5} with leave
L satisfying |A(L)| = 4 would be optimal. Consider the packing of D4
of {[1,0,3,2]y,[3,0,1, 2]y} and leave L = {(0,2),(2,0),(1,3),(3,1)}. Con-
sider the packing of Ds of {[0,1,4,2]y,[2,0,3,1}y, [3,4,0,1}y, [4,3,2, 1]y}
and leave L = {(0,4),(4,2),{2,3),(3,0)}.

If v =2 or 3 (mod 4), then the argument of Theorem 3.2 shows that a
packing of D, with leave Dy would be optimal.

If v = 6, then we have the packing of D¢ of {[3,2,0,1]y, [0,3,4,1]y,
[5,0,2, 1y, [2,3,0,4]y, [2,1,3,5]y, [0,5,2,4]y, [4,3,5,1]y } with leave L =
{(4,5), (5,4)}.

If v = 7, then we have the packing of Dy of {4,5,3,0]y, [0,5,4,1]y,
[15 D, O: 2]1’1 [2: 9,1, B]Y: [31 3, 2, 4]}’) [3: 6: 4, O]Y: [43 6,0, I]Y: [05 6,1, 2])’, []-s 6,
2,3y, [2,6,3,4]y } with leave L = {(5,6), (6,5)}.

If v=2or 3 (mod 4) and v > 10, then D, can clearly be decomposed
into a copy of D, _q, a copy of D,._q 2, and a copy of Dy. Since D, ..z can
be decomposed into copies of Y [2], and Dy_s,2 can be decomposed into
copies of Y by Theorem 2.3, it follows that D, can be packed with copiei

of Y with a leave of L = Ds.

Theorem. 3.4 An optimal packing of D, with copies of Z and leave L
satisfies:

1. L=0ifv=1 (mod 4),

2. |A(L)| = v and the arcs of L are arranged in a collection of disjoint
circuits if v =0 or 2 (mod 4),
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3. |A(L)| = 6 and the arcs of L are arranged in such a way that each vertex
of the leave has in-degree = out-degree = 0 (mod 2) if v = 3 (mod 4).

Proof. If v = 1 (mod 4), then there exists a Z—decomposition of D, [2]

and the result follows.
If v = 0 or 2 (mod 4), then each vertex z of D, satisfies id(z) =

od{z) = 1 (mod 2). Since each vertex of Z has in-degree and out-degree
even, the leave of an optimal packing must have each vertex with both in-
degree and out-degree equal to 1. Therefore the leave of an optimal packing
will consist of v arcs arranged in disjoint circuits. We show these necessary
conditions are sufficient in the following 3 cases:

Case 1. Suppose v = 4¢ where ¢ = 0 (mod 2). Then the set

{64 =1 = 25 44,144,245+ )5 | i € Zat, 5 € Zie_ayp 11} U
{[6,t+3+i+24,1+4,3t —24:i—2j]z | i € Za,J € Zy—ayj2e1} U
{[i,3t + 1 +i,i+ 2,6+ 1 +d)z | i € Zas} U
([6,3t+14,2t +i,t 1 4]y | i € Zgg)
forms a packing with leave I = {(4,2¢t + 1), (2t + ©,4) | © € Zo:} (a
collection of v/2 disjoint 2—circuits).
Case 2. Suppose v = 4t where ¢ = 1 (mod 2). Then the set
{4t — 1 =25+ 4,144,241+ 25]z | 4 € Zgs, 5 € Le—zy241} U
{{i,t+2+i+2j,1+‘i,3t—- 142~ ZjJZ l 1€ Ly, ] € Z(t_g)/g+1}U
{[£,3t -+ 4,2t 45, + 1)z | 1 € Zigy}
forms a packing with leave L = {(2,2t + ), (2t + 4,4) | ¢ € Zos} (a
collection of v/2 disjoint 2—circuits).
Case 3. Suppose v = 4t + 2. Then the set
{64t +14+4—25,1+4,2+i+25]z | i € Zagya,7 € Lt}

forms a packing with leave L = {(4,2¢+ 1+414), (2t +1+4,4) | ¢ € Zo:}
(a collection of v/2 disjoint 2—circuits).

If v = 3 (mod 4), then each vertex z of D, satisfies id(z) =od(z) = 0
(mod 2). Since each vertex of Z has in-degree and out-degree even, the
leave of an optimal packing must have each vertex with both in-degree and
out-degree even. Since [A(D, )] = 2 (mod 4), then for any packing, the leave
L must satisfy [A(L)| = 2 (mod 4). We cannot have all vertices of both
in-degree and out-degree even with only 2 arcs. This condition is possible
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with 6 arcs and a packing with leave L = D3 would be optimal. D, can
clearly be decomposed into a copy of D,—g, a copy of Dy_32, and a copy
of D3. Since D,_g can be decomposed into copies of Z [2], and D,,_3 9 can
be decomposed into copies of Z by Theorem 2.4, it follows that D, can be
packed with copies of Z with a leave of I = Dj.

Theorems 3.1-3.4 give necessary and sufficient conditions for an optimal
packing of 2, with each of the orientations of a 4—cycle.

4 Decompositions of D, with holes

In this section we give necessary and sufficient conditions for the existence
of a decomposition of D{v,w) into each of the orientations of a 4—cycle.
We call such designs decompositions of 1D, with a hole of size w. We only
consider v — w > 1 since if v — w = 1, D{v,w) = D,,.

Theorem 4.1 A Cy—decomposition of D, with a hole of size w ewxists if and
only if {v(mod 4), w(mod 4)} C {0,1} or {v(mod 4), w(mod 4)} C {2,3}
and v —w > 3.

Proof. A C4—decomposition of D(v,w) where v —w == 3 induces a decom-
position of Ds into isomorphic copies of

Clearly such a decomposition does not exist. Therefore, v —w > 3 is
necessary.

An obvious necessary condition is that 4 | JA(D{v,w)}|, which is equiva~
lent to {v(mod 4),w (mod 4)} C {0,1} or {v{mod 4),w (mod 4)} C {2,3}.

If either v = 1 (mod 4) and w = 0 (mod 4) or v = 3 (mod 4) and w = 2
(mod 4), then we can clearly decompose D(v,w) into a copy of Dy, and
a copy of Dy 1. ‘Since, in this case, D,— can be decomposed into copies
of Cy [7] and Dy_y, 4 can be decomposed into copies of Cy by Theorem 2.1,
it follows that D{v,w) can be decomposed into copies of Cj.

If v = 6 and w = 2, then a decomposition of D(v,w) into copies of Cy is
equivalent to a packing of D, with a leave of Dy. Such a structure is given
in Theorem 3.1.

For each of the remaining cases, we can clearly decompose D(v,w) into

a copy of Dy i1 and a copy of Dyooypw—1. In these cases, v ~-w+1=0
or 1 (mod 4), and so D,_41 can be decomposed into copies of Cy [7],
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and since either v —w or w — 1 is even, Dy, 4 -1 can be decomposed into
copies of Cq by Theorem 2.1. It follows that D(v,w) can be decomposed

into copies of Cy. I

In the remainder of this section, we assume the vertex set of D(v,w)
is Vil JVu—w where these sets are as described in Section 1 and V,, =

{001 105" .,(‘U) - 1)0} and Vv—-w = {01511:"' ) ('U —w—= 1)1}

Theorem 4.2 An X —decomposition of D, with a hole of size w exists if and
only if {v(mod 4), w(mod 4)} C {0,1} or {v(mod 4), w(mod 4)} C {2,3},
and v —w # 3 in the case of v = 2(mod 4) and w = 3(mod 4).

Proof. First, suppose there exists an X -~decomposition of D(v,w) with
v =2 (mod 4), w =3 (mod 4), and v —w = 3. Let B be a set of isomorphic
copies of X in such a decomposition. Then |B| is even. Let

z1 = [{a1,b1,¢1,do]x | [a1,b1,c1,do)x € B for some a,b,c,d}|
zo = |{[a1,bo,c1,d1]x | [a1,b0,c1,d1]x € B for some a, b, c,d}|
Iy = |{[a1,bl,6(),d.1]x ' [al,‘bl,CO,dﬂX € B for some a,b,c,d}[
T4 = [{[ao,bl,cl,dllx l [ao,bl,cl,dllx ¢ B for some a, b, c, d}l
s = |{la1,b0,c1,do)x | [a1,bo,c1,do]x € B for some a,b,¢,d}|
z¢ = |{[ao,b1,ca,d1]x | [ao,b1,c0,d1]x € B for some a,b,c,d}|.

Then |B| = #1 + 22 + -+ - + z¢. Since the in-degree equals out-degree for
each vertex in {0p, to,..., (w—1)o}, it follows that &) +x5 = x4 -+z6. Such
a decomposition induces a decomposition of a copy of D3 with vertex set
{01,1,, 2, } into orientations of a 2—path and therefore z; +-z2+z3+24 = 3.
Since there are only 4 such decompositions of D3 (up to isomorphism), we
deduce that either

(i) Tg = 3,

(ii) z3 =3,

(iii) zg =1 and 1 +2z4 = 2, or

(lV) g3 =1and z1 + x4 = 2.

In each case, we reach a contradiction as follows:

(i) If zg == 3, then z1 == z3 == x4 = 0 and therefore x5 = x5. But then
|B| = 3 + 2zs5, contradicting the fact that | B is even.

(ii) If z3 = 3, then a similar argument to that given in (i) leads to a
contradiction, : '

(iii) If zy = 2 and zp = 1, then 23 = z4 = 0 and 2 + z5 = z5. But
then |B| = 5+ 2zs, a contradiction. Similarly if 23 = 1 and z4 = 2, we get
|B| = 5 + 2z, a contradiction. Now if zy = z3 = x4 = 1 then z3 = 0 and
x5 = xg. But then |B| = 3 4- 2z, a contradiction.
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(iv) If z3 = 1 and z; + 24 = 2 then a similar argument to that given

in (iii) leads to a contradiction.
If v-= 0 (mod 4) and w = 1 (mod 4), then we can clearly decompose

D(v,w) into a copy of Dy _yq1 and a copy of Dy—ww—1. Since Dy_,, ) can
be decomposed into copies of X (2] and D, —4 -1 can be decomposed into
copies of X by Theorem 2.2, it follows that D(v,w) can be decomposed

into copies of X.
If v =3 (mod 4) and w = 2 (mod 4), then we can decompose D{v, w)

into & copy of Ds .2, a copy of D(7,2), a copy of Dy y—5,2, a copy of
Dyw—5,w-2, & copy of Dy_y._55, and a copy of Dy__5. Since Dy s
can be decomposed into copies of X [2], the bipartite digraphs can be de-
composed into copies of X by Theorem 2.2, and a decomposition of D(7,2)
is given in Theorem 3.2, it follows that D{v,w) can be decomposed into

copies of X. .
If v = 10 and w = 3, then the following is an X —decomposition of

D(10,3):

_{[31: 01,1‘1: 21])&" [413 01? 21) OO]X: [10)01300: 21]X1 [21’ 01: 31; 10]X1
[00, 01, 41, 31]x, (41, 11,01, Lol x, (00, 11, 31, 41 ) x, [10, 41, 21, 1u)x,
(11,10, 31,00)x, [21, 31, 11, 44]x, {51, 01, 20, Ta]x, [51, 21, 20, 31,
151541, 20, 61]x, (61, 11, 20, 01) x, [B1, 31, 20, 21]x, [61, 51, 20, 41] x,
[01,61,20,51]x, [11, 51, 0, 61)x, [21, 61, O, 51]x, [31, 51, 1o, 61]x,
(41,65, 10,51]x}. : ,
fv=2(mod4), w=3 (mod 4) v —w # 3, and (v,w) # (10,3), then
D(v,w) can be decomposed into a copy of D(10,3), a copy of D73,
a copy of Dy_y..7,3, a copy of Dys—7,w—3, a copy of Dy _w-27, and a
copy of Dy _y—7. Since Dy_,-.7 can be decomposed into copies of X [2],
the bipartite digraphs can be decomposed into copies of X by Theorem 2.2,
and an X —decomposition of D(10, 3) is given above, it follows that D(v,w)

can be decomposed into copies of X.
If v == 9 and w = 4, then the following is an X —decomposition of

D(9,4):
{[01311’31:21})(5[21311)01331])(’[31;11,21101])(,[41101:20)111)(3
[41$21:30;31]X’[31:30321541])(;[41100:11110]Xa [41120501:3()]){:
[10,31,00,41)x, (30, 11, 20,41)x, (20, 31, 10, 21]x, (21, 00, 31, 20) x,

[01, 10,11, 00) x, [Oo, 21, 10, 01]x, [11, 80, 01, 41 ) x }.
If v =1 (mod 4), w = 0 (mod 4), and v — w = 5 then D(v,w) can be

decomposed into a copy of D(9,4) and a copy of Dy 4. Since D o4 can
be decomposed into copies of X by Theorem 2.2 and an X —decomposition
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of D(9,4) is given above, it follows that D(v,w) can be decomposed into
copies of X. If v —w > 9, then D(v,w) can be decomposed into & copy of
Dy ...p and a copy of D,y 4. Since D, .., can be decomposed into copies
of X [2], and D,y can be decomposed into copies of X by Theorem 2.2
it follows that D{v,w) can be decomposed into copies of X.

In the remaining cases, v —w = 0 (mod 4). D(v,w) can be decomposed
into a copy of Dy_., and a copy of D,,_y,w. Since Dy, can be decomposed
into copies of X [2] and D, ..y can be decomposed into copies of X by
Theorem 2.2, it follows that D{v,w) can be decomposed into copies of X.

Theorem 4.3 A Y —decomposition of D, with a hole of size w exists if and
only if {v(mod 4), w(mod 4)} < {0,1} or {v(mod 4), w(mod 4)} C {2,3},
and v —w # 3. ‘

Proof. First, suppose there exists an Y —decomposition of D(v,w) with
{v(mod 4), w(mod 4)} < {0,1} or {w(mod 4), w(mod 4)} C {2,3}, and
v—w = 3. Let B be a set of isomorphic copies of ¥ in such a decomposition.

Let

v = Hlai,b1,c0,dily | a1, b1, co,di]y € B for some a, b, ¢, d}

yo = |{lao,b1,c1,d1]y | a0, b1,¢1,d1]y € B for some a,b,c,d}|

Y = |{[a0, bl, Cg,dl]y l [ao, bl,CO, dI]y € B for some a, b, C,d}]

ve = Hla1,b1,c1,do)y | [a1,b1,¢1,doly € B for some a,b,¢,d}|

ys = |{la1,bo,c1,doly | la, bo, ¢1, doly € B for some a,b,c,d}|.
Since each vertex of {0p, 1g,...,(w~1)¢} has in-degree equal to out-degree,

y1 = ¥2. Such a decomposition induces a decomposition of a copy of D3 with

vertex set {01, 11,2; } into orientations of a 2—path. Therefore y1+y2+yq =

3. However, if either 4, = y2 = y4 or v1 = ¥2 = 0 and y4 = 3, then it is

easily seen that the necessary induced decomposition of D3 does not exist.
We now consider several cases to establish sufficiency.

Case 1. Suppose that either v = 0 (mod 4) and w = 1 (mod 4) or v = 2
(mod 4) and w = 3 (mod 4) and in either case, v —w > 3. We
can clearly decompose D(v,w) into a copy of Dy_41 and a copy of
Dy_ww—1- Since D, 41 can be decomposed into copies of ¥ [2]
and Dy -1 can be decomposed into copies of ¥ by Theorem 2.3,
it follows that D(v,w) can be decomposed into copies of Y.

Case 2. If v = 8 and w = 4, then the following is a ¥ -—-decomposition of
D(8,4): |
{[01,11,00, 24]v, [11, 21,31, Loy, 21, 10, 01, 0]y, [01, 00, 11, Loy,
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[11;31) 01: 20]1’: [01a20: 11:301Y5 [11’ 015315 30]}’1 [311 21a01a00]Y,
[31,30, 21, 1o)v, [20, 21, 11,31 ]y, [00, 21, 20, 31 )y }.

‘Suppose that v = 0 (mod 4), v > 8, and w = 0 (mod 4). If, in
addition, v — w = 4, then D(v,w) can be decomposed into a copy of
D(8,4) and a copy of Dy .- 4. Since a decomposition of D(8,4) exists
as given here and Dy,,_4 can be decomposed into copies of ¥ by
Theorem 2.3, the result follows in this special case. Now if v —w > 4,
then D(v,w) can clearly be decomposed into a copy of D,_,, and a
copy of Dy . Since D,_,, can be decomposed into copies of ¥ [2]
and Dy_w . can be decomposed into copies of ¥ by Theorem 2.3, it
follows that D(v,w) can be decomposed into copies of Y.

Case 3. If v = 9 and w = 4, then the following is a ¥ --decomposition of
D(9,4):

{[10’ 01}005 11]}”! [00521: 10:41]1"’ [10: 21a 00:31]}’1 [00, 11, 10, OI]Y,
[41,01, 31, Ooly, [11, 21,41, 31)y, [31, 11,41, Loy, [31, 21, 11, O1]y,
[41,11,01, 21}y, [01, 21,31, 41]v, [11, 20, 01, o)y, [21, 20, 11, 30]y,
[31, 20, 21, 30]y, [41, 20,31, 30)v, (01, 20,41, 30]y }.

Suppose that v = 1 (mod 4), v > 9 and w = 0 (mod 4). If, in addition,
v—w = 5, then D(v, w) can be decomposed into a copy of D(9,4) and
a copy of Dg 4. Since a decomposition of D(9,4) exists as given
here and Dy ,,—4 can be decomposed into copies of Y by Theorem 2.3,
the result follows in this special case. Now if v —w > 5, then D(v,w)
can clearly be decomposed into a copy of D,_,, and a copy of Dy 4
and the result follows as in Case 2.

Case 4. If v = 6 and w = 2, then a decomposition of D(6,2) is given
in Theorem 3.3. Suppose that v = 2 (mod 4), v > 6, and w = 2
(mod 4). If, in addition, v —w = 4, then D(v,w) can be decornposed
into a copy of D(6,2) and a copy of Dy -9, Since a decomposition
of D(6,2) exists and Dy 4,—2 can be decomposed into copies of Y by
Theorem 2.3, the result follows in this special case. Now if v —w > 4,
then D(v,w) can clearly be decomposed into a copy of D,_,, and a
copy of Dy_y . and the result follows as in Case 2.

Case 5. If v = 9 and w = 5, then we observe that D(9,5) can be decom-
posed into a copy of D(6,2) and a copy of Dy 3. Since D(6,2) can be
decomposed into copies of Y by case 4, and Dy 3 can be decomposed
into copies of Y by Theorem 2.3, it follows that D(9, 5) can be decom-
posed into copies of Y. Suppose that v =1 (mod 4),v > 9,andw = 1
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(mod 4). If, in addition, v —w = 4, then D(v,w) can be decomposed
into a copy of D(9,5) and a copy of D4 5. Since a decomposition
of D(9,5) exists as given here and Dyg,,—5 can be decomposed into
copies of ¥ by Theorem 2.3, the result follows in this special case.
Now if v — w > 4, then D(v,w) can clearly be decomposed into a
copy of Dy_ and a copy of 1,y and the result follows as in Case

2.

Case 6. If v = 7 and w = 2, then a decomposition of D(7,2) is given
in Theorem 3.3. Suppose that v = 3 (mod 4), v > 7, and w = 2
(mod 4). If, in addition, v — w = 5, then D(v,w) can be decomposed
into a copy of D(7,2) and a copy of Ds —3. Since a decomposition

~of D(7,2) exists and Ds 4,9 can be decomposed into copies of ¥.by
Theorem 2.3, the result follows in this special case. Now if v —w > 3,
then D(v,w) can clearly be decomposed into a copy of Dy_.y and a
copy of Dy_y 2 and the result follows as in Gase 2.

Case 7. If v = 7 and w = 8, then the following is a ¥ —decomposition of
D(7,3):

{[31,21,04, 1]y, [01,31, 00, 11]¥, [10, 01, 21, l1]y,
[21:311 OI:OO]Y: [211 111 313 10]]’; [001 11: 201 21]Ya
[20,01, 10, 11]y, [31, Lo, 21, 20]y¥ [01, 0o, 31, 20)v }-

Suppose that v = 3 (mod 4), v > 7, and w = 3 (mod 4). If, in
addition, v — w = 4, then D(v,w) can be decomposed into a copy of
D(7,3) and a copy of Dy ..3. Since a decomposition of D(7,3) exists
and Dy 4,3 can be decomposed into copies of Y by Theorem 2.3, the
result follows in this special case. Now if v —w > 4, then D(v,w) can
clearly be decomposed into a copy of Dy...y and a copy of Dy_wp,uw

and the result follows as in Case 2.

Theorem 4.4 A Z—decomposition of D,, with a hole of size w exists if and
only if either v=w =1 (mod 4), v>L,w>1 orv=w=3 (mod 4).

Proof. As in Theorem 4.1, it is necessary that 4 | |A(D(v,w})|. The in-
degree of each vertex of Z is even. Since D(v,w) contains v — w vertices of
in-degree w, it is necessary that w is odd. Also, D(v,w) contains w vertices
of in-degree v — w and so it is necessary that v is odd. This establishes the
necessary conditions.

D(v,w) can clearly be decomposed into a copy of Dy—w+1 and a copy
of Dyowoo—1. Since v —w + 1 =1 (mod 4), Dy.yy1 can be decomposed
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into copies of Z [2]. Since both v —w and w — 1 are even, Dy pw—1 can be
decomposed into copies of Z by Theorem 2.4. Tt follows that D(v,w) can

be decomposed into copies of Z.

Theorems 4.1-4.4 give necessary and sufficient conditions for a decomposi-
tion of [Jy with a hole of size w for each of the orientations of a 4—cycle,
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