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A Steiner triple system of order v, denoted STS(v), is said to be k-near-rotational
if it admits an automorphism consisting of three fixed points and k& cycles of length
(v— 3)/k. In this paper, we show that, for n 1, a 2n-near-rotational STS({v) exists
if and only if y=1 or 3 (mod 6), v=3 (mod 2x), and v 5 13 or 21 when n = 1. Also,
for #3221, a 3n-near-rotational STS(v) exists if and only if v=3 (mod 6) and v=3
(mod 3n). © 1992 Academic Press, Inc,

1. INTRODUCTION

A Steiner triple system of order v, denoted STS(v), is a v-element set, X,
of points, together with a set §, of unordered triples of elements of X, called
blocks, such that any two points of X are together in exactly one block of
B. 1t is well known that a STS(v) exists if and only in v=1 or 3 (mod 6).
An automorphism of a STS(v) is a permutation, =, of X which fixes .
A permutation 7 of a v-element set is said to be of type [z] = [ py, P2, - Po]
if the disjoint cyclic decomposition of n contains p; cycles of length i The
orbit of a block under an automorphism, =, is the image of the block under
the powers of m. A set of blocks, B, is said to be a set of base blocks for
a STS(v) under the permutation w if the orbits of the blocks of B produce
the STS(v) and exactly one block of B occurs in each orbit.

Several types of automorphisms have been explored in connection with
the problem of determining the values of v for which there is a STS(v)
admitting the automorphism. In particular, a STS(v) admitting an
automorphism of type [1, 0, .., 0, &, 0, .., 0] is called a k-rotational STS(v).
The question of existence for k-rotational STS(v) has been solved for
k=1,2,3,4, and 6 [3, 8]. It is fairly easy to see that the fixed points of
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an automorphism form a subsystem. Since a STS(v) exists if and only if
v=1 or 3 (mod 6), the number of fixed points is also 1 or 3 {mod 6).
Therefore, a natural question to ask is “What is the spectrum of values of
v for which there is a STS(v) admitting an automorphism consisting of
three fixed points and & cycles each of length (v— 3)/k?” We will call such
a design a k-near-rotational STS(v).

2. THE EXISTENCE OF 2#-NEAR-ROTATIONAL STEINER TRIPLE SYSTEMS

A 2n-near-rotational STS(v) admits an automorphism of the type [3, 0,
0,.., 0, 2n, 0,.., 0], We will first show existence for 2-near-rotational
STS(v) and then deal with the general 2#-near-rotational case. We need the
existence of certain other types of Steiner triple systems. A STS(v)
admitting an automorphism consisting of a single cycle is called cyelic and
such systems exist if and only if v=1 or 3 (mod 6) and v#9 [5, 6, 7,
and 9]. A STS(v) admitting an automorphism of type [1, 1,9, ..,0,%,0,...,0]
is said to be k-transrotational. A 1-transrotational STS({v) exists if and only
ifo=1,7,9 or 15 (mod 24) [4]. A STS(v) admitting an automorphism of
type [0, 0, 1,0,..,0, 1, 0, 0, 0] exists if and only if v=3 (mod 6} [2].

THEOREM 2.3. A 2-near-rotational STS(v) exists if and only if v=1 or 3
(mod 6) and v # 13 or 21.

Proof. Ifv=1,7,9, or 15 (mod 24) then there exists a 1-transrotational
STS(v) admitting the relevant automorphism = of type [1,1,0,..,0,
1,0, 0, 0]. If we consider the same STS(v) under the automorphism =* then
we see that it is also 2-near-rotational.

We now answer the question of existence in the remaining cases by
considering blocks on the set X =Z, x {1,2} U {00, c0,, c04}. We put the
automorphism 7 = (c0,)(00,)(c03)(0y, 1y, .y (N—1)1)(05, 15, .., (N—1),)
on this set, where N = (v — 3)/2. With the pair (x,, ;) we associate the pure
difference of type i defined as min{(x — y)(mod N), (y — x}(mod N)}. With
the pair (x,, y») we associate the mixed difference (y— x)(mod N). The
construction of a 2-near-rotational STS(v) is equivalent to partitioning the
collection of these differences into sets of differences associated with blocks
which are base blocks under .

For v=13, the set of mixed differences, {0, 1, 2, 3, 4}, the set of pure
differences of type 1, {1, 2}, and the set of pure differences of type 2, {1, 2},
must be partitioned into sets of differences associated with base blocks of
a STS(13) under =. A mixed difference must be used in a base block of the
form (co,, x;, y;), i# ], for k=1,2,3. This leaves two mixed differences
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and a total of four pure differences. These clearly cannot be partitioned
into sets of differences associated with base blocks. For v =21, a similar
exhaustive search reveals that a 2-near-rotational STS(21) does not exist.
For more information on the difference method of construction, see

Anderson [1].
In the following cases, base blocks for a 2-near-rotational STS(v) under

7 are presented:
Case la. fv=27 then take the blocks

(001, OOZ’ 003)’ (Ola 21’ 31)’ (011 41, 81)5 (0013 01, 61)s (021 42, 82)5
(001, 023 62)3 (01: 22’ 32): (Ols 12: 42)’ (017 02! 52): (01: 823 102)’
(112’ 01, 51): (002, 01’ 72)’ (0035 Ola 92)'

Case 1b. If v=3 (mod 24), say v= 24k + 3, where k22, then take
the blocks

(001, 03, C'OB)’ (001: 01’ (6k)1)’ (001, 02: (6k)2)’ (0027 01’ (9k'_ 1)2)’
(004, 0y, (L1 = 1),), (0,, (4k)1, (8K)1), (02, (4K)2, (8K)2),
(04, (6k),, (11K)s),

(05, Bk —1—r)y, Bk +71),) for r=0,1,., k-1,
(05, (Sk—1—r)y, (Sk+1+71),) for r=0,1,..,k—-2,
(0,5, Ok —r)y, Ok +1+71)) for r=0,1,.,3k—1,
(05, Bk —r)y, Bk +2+7r),) for r=0,1,.,2k-2,

0,, (Sk+1+7);, (k=1—r))  for r=0,1,., k=2

Case 2a. If v =237 then take the blocks

(004, 002, 003), (001, 0y, 72), (02, 0y, 115), (003, 0y, 12,),
(0,, 41, 10,), (05, 4;, 10,), (0, 52, 82),

(0,, 13, 14,), (05, 124, 15,), (05, 114, 16,),

(04, 04, 9,), (0, 14, 3,), (04, 95, 10,), (04, 135, 15,).

Case 2b. If p=13 (mod 24), say v =24k + 13, where k >2, then take
the blocks
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(004, 003, 03), (03, (2k);, (3k + 1)),

(03, (4k—3),, (2k—3);), (004, 0y, (9% +3),),

(0,, (Sk+1—r), (Sk+2+7r))) for r=0,1,..,k%,
(04, B3k—r), 3k+2+7),) for r=0,1,.,k—-2,

(04, Bk—r)y, Bk+1+47r)y) for r=90,1,.., 3%,

(0, 9k +2—r)y, Ok +447r),) for r=0,1,.,k—2,k k+1,.,3k

One of the above blocks is of the form (0,, a,, (a+ 3k + 1),). Replace it
with the block (0,, (12k —a),, (9% —1—a),).

Another block is of the form (0,, b,, (b+ k& + 1),). Omit it and add the
blocks (004, 0, b;) and (003, 0y, (B +k+ 1),). '

Case 3a. If v=19 then take the blocks

(0013 002, 003)’ (001, 01, 41)’ (001, OZ: 42)3 (OOZ, 013 52)’ (0033 01: 72)
(Ols 11’ 31)5 (013 12a 22)’ (Ol’ 02: 32)5 (01, 429 62)

Case 3b. If v=19 (mod 24), say v =24k + 19, where k > 1, then take
the blocks

(004, 003, 003), (001, Oy, (6k +4),), (c0y, 0z, (65 +4),),

(005, 0, (8K -+ 4),), (<03, 0, (10K +6),), (0, (8% +6),, (10k +7),),

(0, (Th+5),, (11k +8),), (05, (2K + 1), (4k +3),), (05, 1,, (3k +3),)

©,, Gk+1—r),, Bk+3+r)) for O 1, k—1,

0, (5k+3—r)y, (Sk+4+7),)  for r=0,1,., k—1, .

0, Gk +1—=r)y, Bk+2+4r),)  for r=0,1,mk—1,k+1,k+2,.,2%k
2k 42,2%k+3, . 3k 1,

©,, (Ok+4—r)y, Ok +6+r)y) for r=0,1,..k—1Lk+1k+2,., 3k

Case 4. If v=21 (mod 24), say v =24k + 21, where k > 1, then take
the blocks

(001, 03, 03), (04, (4k +3),, (8K + 6),), (04, 04, k),

(002, 0y, (5k + 3),), (003, 0y, (9% +6),),

(0, Bk+1—r),, Bk+2+47r),) for r=0,1,.., 2k, 2k+2,
| | 243, et 1,

0y, 9k +5—1r),, Ok+T+r),) for r=0,1,..,3k+1
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Plus, take the base blocks for a cyclic STS(¥) on the set Z, x {1}, where
N = (v—3)/2. This can be done since N=3 (mod 6) and ¥N#9. |}

We now turn our attention to 2n-near-rotational STS(v).

THEOREM 2.4. A 2n-near-rotational STS(v) exists if and only if v=1 or
3 (mod 6), v=3 (mod 2n), and v+# 13 or 21 when n= 1.

Proof. Since a Steiner triple system exists if and only if v=1 or 3
(mod 6), this is a trivial necessary condition. Also, a 2n-near-rotational
STS(v) has an automorphism consisting of three fixed points and 2z cycles,
so it is necessary that 2»n | (v — 3).

In Theorem 2.3, we saw that a 2-near-rotational STS(v) does not exist
for v =13 or 21. However, a 6-near-rotational STS(21) does exist. By pre-
viously stated results, there exists a STS(21), admitting an automorphism
7 of type [0,0, 1,0, .., 0,1,0,0,0]. This system is also 6-near-rotational as
can be seen by considering n° In general, if we take any 2-near-rotational
STS(v) admitting the relevant automorphism =, then by taking the
automorphism n” we see that the STS(v) is also 2#-near-rotational. |

3. THE EXISTENCE OF 3#-NEAR-ROTATIONAL STEINER TRIPLE SYSTEMS

A 3n-near-rotational STS(v) admits an automorphism of the type [3, 0,
0, .., 0, 3n 0,.. 0] The construction of these trivially follows from a result

of Calahan [2].

THEOREM 3.1. A 3n-near-rotational STS(v) exists if and only if v=13
(mod 6) and v=3 (mod 3#n),

Proof. The conditions are necessary, since 3n | (v—3). Sufficiency is
established by applying an above mentioned result. If v satisfies the
necessary conditions, then there is a STS(v) admitting an automorphism =
of type [0,0,1,0,..,0,1,0,0,0] (see [2]). The automorphism 7" is then
of type [3,0, .., 0, 31,0, .., 0] and the STS(v) is also 3n-near-rotational. ||
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