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Abstract. We give necessary and sufficient conditions for the existence of a
decomposition of the complete graph into stars which admits either a cyclic or a
rotational automorphism.

1 Introduction

We denote the complete graph on n vertices by K, and the star with m
edges by Sm. Let mi > mg > ... > my be nonnegative integers. Then
8 SmyrSmar e s S, — decomposition of Kn (or a star decomposition of K,
for short) is a collection of stars such that

i
E(Smi) (VE(Sm,) = 0if i # 5, and U E(Sm:) = E(Kn).

=1

Tt was recently shown in [2] that such a decomposition exists if and only if

k ]
- n
. 1m,;_*<_ El(n—z) fork=1,2,...,n—1, and Elmi:( o )
2= == . 1=

An automorphism of a star decomposition is a permutation of V(Ky)
which fixes the set {Sm,, Sma, -+ -+ Sm, }+ The orbit of a star under an au-
tomorphism 7 is the collection of images of the star under the powers of
x. A permutation of V(K,) which consists of a single cycle of length n is
said to be cyclic. A permutation of V(K,) consisting of a fixed point and
a cycle of length n — 1 is said to be rotational. Several graph and digraph
decompositions have been studied which admit either a cyclic or rotational
automorphism. See, for example, {1, 3, 4, 5]. The purpose of this paper is
to give necessary and sufficient conditions for the existence of star decom-
positions of K, which admit either a cyclic automorphism or & rotational

automorphism.

k

2 Cyclic Star Decompositions of K,

Throughout this section, we assume the vertex set of K is {0,1,...,n— 1}
and we will construct star decompositions of K,, admitting m = (0,1,...,n—
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1) as an automorphism.

Lemma 2.1 If there exists a Spm,, Smyy - vy Sy —decomposition of K,, which
admits a cyclic automorphism and if n is even, then |{i | m; = 1} =n/2
(mod n). '

Proof. The edge (0,7/2) must lie in some star, say Sm,.  Then
7™2((0,n/2)) = (0,n/2) and since each edge occurs in exactly one star
“of the decomposition, it must be that #™/2(S,, ) = Sm. . Therefore m, = 1,
Let A = {7*(Sm,) | i € Z}. Then |A] = n/2 and if S, ¢ A then the length
of the orbit of S, is n. Therefore |{i | m; = 1}| = n/2 (mod n). E

As argued in Lemma 2.1, the length of the orbit of every star in a cyclic
star decomposition of K, is n except for the special “short obit” stars in

set A. We therefore have:

Lemma 2.2 If there exists a SmirOmay ey Sy —decomposition of K,, which
admits a cyclic automorphism, then fork = 1,2,...,n— L {i|m; =k} =
0 (mod n), except for the case k = 1 when n is even.

We show the necessary conditions of Lemmas 2.1 and 2.2, along with the
necessary conditions for the existence of a star decomposition of K,, are
sufficient for the existence of a cyclic star decomposition of K,,.

Theorem 2.1 Let my > mgy > - > my be nonnegative integers. Then
there is a cyclic Sy, ,Smy, . - - s O, —decomposition of K, if and only if

k k I
ZmigZ(n—i)fork:1,2,...,n_1, Zmz:(g)
i1 i1 =1

and
(a) [{i|mi =k} =0 (modn) for allk =1,2,... ,n~1 if n is odd, or

(b) Hi|mi =1} =n/2 (mod n) and |{i | m; = k} =0 (mod n) for all
k=23,...,n—1 i n is even.

Proof. We need only establish sufficiency. Without loss of generality, we
may assume my; 2> 1. If n is odd, consider the collection of stars with edge

sets

k
E(Smy i) = {647+ my_ i) |7=1,2,... s Mk, }
=1
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fori=0,1,...,n—1and k =0,1,...,I/n — 1. If n is even, consider the
collection of stars with edge sets

E(szw-s.) - {(Z: i+ n/2)}

fori =0,1,...,n/2 -1, and

| k

E(Sml—n/2-~k:n.—i) - {(i’i+r+zml—n/2——(3’—l)n) I r=12,... ,mt-un/2-ﬂk:n}
j=1

for i = 0,1,...,n—1and k =0,1,...,(l —n/2)/n ~ 1. In each case, the

given collection of stars forms a cyclic star decomposition of K. E

3 Rotational Star Decompositions of K,

Throughout this section, we assume the vertex set of K, is {c0,0,1,...,
n—2} and we will construct star decompositions of K, admitting m = (co)
(0,1,...,n — 2) as an automorphism. '

As in Lemma 2.1, if n — 1 is even, then the edge (0 (n — 1)/2) must
occur in some Sy,, where m; = 1. We analogously have:

Lemma 3.1 If there exists a Spy, Sy, - - - » Sy, — decomposition of K, which
admits a rotational automorphism and if n is odd, then |{t | m; = 1}| =
(n—1)/2 (mod n - 1).

The orbit of each star of a rotational star decomposition of K, is of length
n — 1, with two possible types of exceptions: (1} if n is odd, then the
stars S; with edge sets {(¢,7+ (n ~ 1)/2)} for some i have orbits of length
(n—1)/2,and (2) if m | (n — 1), m # 1, say (n — 1)/m = p then the stars
S, with edge sets {{00, 1), (co,4+p),. .., (00,4+n—1—p)} for some ¢ have
orbits of length p. .

Theorem 3.2 Let my > mg > -+ > my be nonnegative integers. Then
there is a rotational Spy, Smys - - - » Sm,— decomposition of K, if and only if

k 2 t
th-gZ(n-—i)forkxl,&...,n—l, Zmi:( 721)
i=1 i=1 i=1

and

(a) |{¢ |m; =k} =0 (modn—1) for al k =1,2,...,n— 1 if n is even,
or



(b) {i | mi =1} =(n—1)/2 (mod n —1) and |{i | m; = k}| = 0 (mod
n—1) for allk =2,3,...,n—1 if n is odd, or

(c) ifm | (n—1), say (n ~1)/m = p, for some m € {m1,mg,...,m},
m # 1, then [{i [m; =m}| =p (modn—1) and [{i | m; =k} =0
(modn—1) forallk =1,2,...,m~1,m+1,...,n—1 ifn is even,
or '

(d) f m | (n—1), say (n —1)/m = p, for some m € {m1,maq,...,my},
m # 1, then [{i | m; = m}| = p (modn—1), {i | m; = 1} =
(n—1)/2 (mod n — 1) and |{i | my = k}| = 0 (mod n — 1) for all
k=23,...,m=1,m+1,....,n—1ifn is odd, |

Proof. We need only establish sufficiency. Without Loss of generality, we
may assume 7y > 1. We consider the four cases separately.

(a) Consider the collection of stars with edge sets

E(Sm!—i) = {(OO,’&)} U{(”::i"FT) l r=12,...,my “"1}
fori=0,1,...,n—2 and

k
E(Sml—k(n.-—l)—i) = {(7'12 +r—1+ Zml*(j_l)(n—l))

j=1
|7 =12,...,m_kn-1)}
fori=0,1,...,n-2and k=1,2,...,l/(n—1) ~ 1.
(b) Consider the collection of stars with edge sets
B(Smy_.) ={(%i+ (n - 1)/2)}
fori=0,1,...,(n—-1)/2 -1,

E(Sm!—(n—-l)/Qmi) = {(c0,1)} U{(’&, i)

l r=1,2,... :mt—(nwl)/z—k(n—i) - 1}
fori=0,1,...,n — 2, and

k

E(Smm(n-u1)/2—k-(n—1)—=') ={(hi+r—-1+ Zmi*(n—l)ﬂ—(j—l)(nml))
=1 |

|7 =1,2,...,m_(n-1)/2-k(n—1)}
fori=0,1,...,n-2and k=1,2,...,({ — (n~1)/2)/(n — 1) — 1.
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(c) Let t be the largest index such that m; = m. Consider the collection
of stars with edge sets

k
E(Sml-—-k.('n.—l)-—i) ={(§,i+r+ Zml—(j_l)(n—l))
=1

_ IT = 112:"'iml-—-k(n—l)} 7
fori=0,1,...,n—2andk=0,1,...,({=¢t)/(n—1) -1,

E(Smtni):{(ooai"l_rp)’T=0a11--'amt_1}
fori=0,1,...,p— 1,

{i~t)/(n-1)
E(Smf._puk(n_n_i) = {(i,i“*“ T+ Z MY (§—1)(n—1)
J=1
k
-+ mt—p—-(j—l)(n—l)) | r=1,2..., mt—-p——k(nﬂl)}
ot .

fori=0,1,...,n—2and k=0,1,...,(t—p)/(n—1) =L

(d) Let ¢ be the largest index such that m; = m. Consider the collection
of stars with edge sets

E(Sml—i) = {(z: t+ (TL - 1)/2)}

fori=0,1,...,(n—1}/2 -1,
k

E(S'ml-(_ﬂ-—l)/2—k(n-1)-—i) - {(7'37' +r+ Z miw(n—l)/z—(j~1)(nH1))
=1

I r=1,2,... ’ml—(nﬂl)/2—k(n—1)}
fori=01,....n~2and k=0,1,...,(1 —t}/(n—1) =1,

E(Smi‘-—--r) = {(OO,’L-I—Tp) |T 20111"':mt o 1}
fori=0,1,...,p—1,
E(Smt—pqn—n/z—k(n—1)Hi) ={{5,i+r

(i—-t)/(n-1) k .
Y MG ne1) ) Miep(n=1)/2- (= 1)(n-1))
J=1 7=1

IT =1,2,.. -,mt—p—(n-—l)/2—k(n—1)}
fori=0,1,...,n—2and k=0,1,...,t—p—(n—1)/2)/(n~1) - L

In each case, the given stars form a rotational decomposition of K. B

317



References

[1] C. J. Cho, Rotational Mendelsohn Triple Systems Kyungpook Math
J. 20 (1986), 5-9.

[2] C. Lin and T. Shyu, A Necessary and Sufficient Condition for the Star
Decomposition of Complete Graphs, J. Graph Theory 23(4) (1996),

361-364.

(3] B. Micale and M. Pennisi, Cyclic Mendelsohn Quadruple Systems,
Ars Combinatria 35 (1993), 225-236.

[4] R. Peltesohn, A Solution to both of Heffter’s Difference Problems (in
German), Compositio Math. 6 (1939), 251-257.

[6] M. Pennisi, On the Rotational Mendelsohn Designs, J. Combina-
torics, Information and Systems Sciences, to appear.

318



