Cyclic and Rotational Decompositions of K_n into Stars

Robert B. Gardner
Institute of Mathematical and Physical Sciences
East Tennessee State University
Johnson City, Tennessee 37614 – 0296

Abstract. We give necessary and sufficient conditions for the existence of a decomposition of the complete graph into stars which admits either a cyclic or a rotational automorphism.

1 Introduction

We denote the complete graph on n vertices by K_n and the star with m edges by S_m . Let $m_1 \geq m_2 \geq \ldots \geq m_l$ be nonnegative integers. Then a $S_{m_1}, S_{m_2}, \ldots, S_{m_l}$ -decomposition of K_n (or a star decomposition of K_n , for short) is a collection of stars such that

$$E(S_{m_i}) \cap E(S_{m_j}) = \emptyset \text{ if } i \neq j, \text{ and } \bigcup_{i=1}^l E(S_{m_i}) = E(K_n).$$

It was recently shown in [2] that such a decomposition exists if and only if

$$\sum_{i=1}^{k} m_i \le \sum_{i=1}^{k} (n-i) \text{ for } k = 1, 2, \dots, n-1, \text{ and } \sum_{i=1}^{l} m_i = \binom{n}{2}.$$

An automorphism of a star decomposition is a permutation of $V(K_n)$ which fixes the set $\{S_{m_1}, S_{m_2}, \ldots, S_{m_l}\}$. The orbit of a star under an automorphism π is the collection of images of the star under the powers of π . A permutation of $V(K_n)$ which consists of a single cycle of length n is said to be cyclic. A permutation of $V(K_n)$ consisting of a fixed point and a cycle of length n-1 is said to be rotational. Several graph and digraph decompositions have been studied which admit either a cyclic or rotational automorphism. See, for example, [1, 3, 4, 5]. The purpose of this paper is to give necessary and sufficient conditions for the existence of star decompositions of K_n which admit either a cyclic automorphism or a rotational automorphism.

2 Cyclic Star Decompositions of K_n

Throughout this section, we assume the vertex set of K_n is $\{0, 1, \ldots, n-1\}$ and we will construct star decompositions of K_n admitting $\pi = (0, 1, \ldots, n-1)$

1) as an automorphism.

Lemma 2.1 If there exists a $S_{m_1}, S_{m_2}, \ldots, S_{m_l}$ -decomposition of K_n which admits a cyclic automorphism and if n is even, then $|\{i \mid m_i = 1\}| \equiv n/2 \pmod{n}$.

Proof. The edge (0, n/2) must lie in some star, say S_{m_s} . Then $\pi^{n/2}((0, n/2)) = (0, n/2)$ and since each edge occurs in exactly one star of the decomposition, it must be that $\pi^{n/2}(S_{m_s}) = S_{m_s}$. Therefore $m_s = 1$. Let $A = \{\pi^i(S_{m_s}) \mid i \in \mathbf{Z}\}$. Then |A| = n/2 and if $S_{m_t} \notin A$ then the length of the orbit of S_{m_t} is n. Therefore $|\{i \mid m_i = 1\}| \equiv n/2 \pmod{n}$.

As argued in Lemma 2.1, the length of the orbit of every star in a cyclic star decomposition of K_n is n except for the special "short obit" stars in set A. We therefore have:

Lemma 2.2 If there exists a $S_{m_1}, S_{m_2}, \ldots, S_{m_l}$ -decomposition of K_n which admits a cyclic automorphism, then for $k = 1, 2, \ldots, n-1$, $|\{i \mid m_i = k\}| \equiv 0 \pmod{n}$, except for the case k = 1 when n is even.

We show the necessary conditions of Lemmas 2.1 and 2.2, along with the necessary conditions for the existence of a star decomposition of K_n , are sufficient for the existence of a cyclic star decomposition of K_n .

Theorem 2.1 Let $m_1 \geq m_2 \geq \cdots \geq m_l$ be nonnegative integers. Then there is a cyclic $S_{m_1}, S_{m_2}, \ldots, S_{m_l}$ -decomposition of K_n if and only if

$$\sum_{i=1}^{k} m_i \leq \sum_{i=1}^{k} (n-i) \text{ for } k = 1, 2, \dots, n-1, \qquad \sum_{i=1}^{l} m_i = \binom{n}{2}$$

and

(a)
$$|\{i \mid m_i = k\}| \equiv 0 \pmod{n}$$
 for all $k = 1, 2, ..., n-1$ if n is odd, or

(b)
$$|\{i \mid m_1 = 1\}| \equiv n/2 \pmod{n} \text{ and } |\{i \mid m_i = k\}| \equiv 0 \pmod{n} \text{ for all } k = 2, 3, ..., n-1 \text{ if } n \text{ is even.}$$

Proof. We need only establish sufficiency. Without loss of generality, we may assume $m_l \geq 1$. If n is odd, consider the collection of stars with edge sets

$$E(S_{m_{l-k_{n-i}}}) = \{(i, i+r + \sum_{j=1}^{k} m_{l-(j-1)n}) \mid r = 1, 2, \dots, m_{l-k_n}\}$$

for i = 0, 1, ..., n - 1 and k = 0, 1, ..., l/n - 1. If n is even, consider the collection of stars with edge sets

$$E(S_{m_{l-i}}) = \{(i, i+n/2)\}$$

for i = 0, 1, ..., n/2 - 1, and

$$E(S_{m_{l-n/2-kn-i}}) = \{(i, i+r+\sum_{j=1}^{k} m_{l-n/2-(j-1)n}) \mid r=1, 2, \dots, m_{l-n/2-kn}\}$$

for i = 0, 1, ..., n - 1 and k = 0, 1, ..., (l - n/2)/n - 1. In each case, the given collection of stars forms a cyclic star decomposition of K_n .

3 Rotational Star Decompositions of K_n

Throughout this section, we assume the vertex set of K_n is $\{\infty, 0, 1, \ldots, n-2\}$ and we will construct star decompositions of K_n admitting $\pi = (\infty)$ $(0, 1, \ldots, n-2)$ as an automorphism.

As in Lemma 2.1, if n-1 is even, then the edge (0, (n-1)/2) must occur in some S_{m_s} where $m_s=1$. We analogously have:

Lemma 3.1 If there exists a $S_{m_1}, S_{m_2}, \ldots, S_{m_l}$ —decomposition of K_n which admits a rotational automorphism and if n is odd, then $|\{i \mid m_i = 1\}| \equiv (n-1)/2 \pmod{n-1}$.

The orbit of each star of a rotational star decomposition of K_n is of length n-1, with two possible types of exceptions: (1) if n is odd, then the stars S_1 with edge sets $\{(i, i+(n-1)/2)\}$ for some i have orbits of length (n-1)/2, and (2) if $m \mid (n-1), m \neq 1$, say (n-1)/m = p then the stars S_m with edge sets $\{(\infty, i), (\infty, i+p), \ldots, (\infty, i+n-1-p)\}$ for some i have orbits of length p.

Theorem 3.2 Let $m_1 \geq m_2 \geq \cdots \geq m_l$ be nonnegative integers. Then there is a rotational $S_{m_1}, S_{m_2}, \ldots, S_{m_l}$ -decomposition of K_n if and only if

$$\sum_{i=1}^{k} m_i \leq \sum_{i=1}^{k} (n-i) \text{ for } k = 1, 2, \dots, n-1, \qquad \sum_{i=1}^{l} m_i = \binom{n}{2}$$

and

(a)
$$|\{i \mid m_i = k\}| \equiv 0 \pmod{n-1} \text{ for all } k = 1, 2, ..., n-1 \text{ if } n \text{ is even,}$$

(b)
$$|\{i \mid m_i = 1\}| \equiv (n-1)/2 \pmod{n-1} \text{ and } |\{i \mid m_i = k\}| \equiv 0 \pmod{n-1} \text{ for all } k = 2, 3, \ldots, n-1 \text{ if } n \text{ is odd, or}$$

(c) if
$$m \mid (n-1)$$
, say $(n-1)/m = p$, for some $m \in \{m_1, m_2, \ldots, m_l\}$, $m \neq 1$, then $|\{i \mid m_i = m\}| \equiv p \pmod{n-1}$ and $|\{i \mid m_i = k\}| \equiv 0 \pmod{n-1}$ for all $k = 1, 2, \ldots, m-1, m+1, \ldots, n-1$ if n is even, or

(d) if
$$m \mid (n-1)$$
, say $(n-1)/m = p$, for some $m \in \{m_1, m_2, \ldots, m_l\}$, $m \neq 1$, then $|\{i \mid m_i = m\}| \equiv p \pmod{n-1}$, $|\{i \mid m_i = 1\}| \equiv (n-1)/2 \pmod{n-1}$ and $|\{i \mid m_i = k\}| \equiv 0 \pmod{n-1}$ for all $k = 2, 3, \ldots, m-1, m+1, \ldots, n-1$ if n is odd.

Proof. We need only establish sufficiency. Without Loss of generality, we may assume $m_l \geq 1$. We consider the four cases separately.

(a) Consider the collection of stars with edge sets

$$E(S_{m_{l-i}}) = \{(\infty, i)\} \bigcup \{(i, i+r) \mid r = 1, 2, \dots, m_l - 1\}$$
 for $i = 0, 1, \dots, n-2$ and

$$E(S_{m_{l-k(n-1)-i}}) = \{(i, i+r-1 + \sum_{j=1}^{k} m_{l-(j-1)(n-1)})\}$$

$$| r = 1, 2, \dots, m_{l-k(n-1)}$$

for
$$i = 0, 1, ..., n-2$$
 and $k = 1, 2, ..., l/(n-1)-1$.

(b) Consider the collection of stars with edge sets

$$E(S_{m_{l-i}}) = \{(i, i + (n-1)/2)\}\$$

for
$$i = 0, 1, \dots, (n-1)/2 - 1$$
,

$$E(S_{m_{l-(n-1)/2-i}}) = \{(\infty, i)\} \bigcup \{(i, i+r)\}$$

$$| r = 1, 2, \dots, m_{l-(n-1)/2-k(n-1)} - 1$$

for i = 0, 1, ..., n - 2, and

$$E(S_{m_{l-(n-1)/2-k(n-1)-i}}) = \{(i, i+r-1 + \sum_{j=1}^{k} m_{l-(n-1)/2-(j-1)(n-1)})\}$$

$$| r = 1, 2, \dots, m_{l-(n-1)/2-k(n-1)}$$

for
$$i = 0, 1, ..., n - 2$$
 and $k = 1, 2, ..., (l - (n - 1)/2)/(n - 1) - 1$.

(c) Let t be the largest index such that $m_t = m$. Consider the collection of stars with edge sets

$$E(S_{m_{l-k(n-1)-i}}) = \{(i, i+r + \sum_{j=1}^{k} m_{l-(j-1)(n-1)}) \\ | r = 1, 2, \dots, m_{l-k(n-1)} \}$$
for $i = 0, 1, \dots, n-2$ and $k = 0, 1, \dots, (l-t)/(n-1)-1$,
$$E(S_{m_{t-i}}) = \{(\infty, i+rp) \mid r = 0, 1, \dots, m_t-1 \}$$
for $i = 0, 1, \dots, p-1$,
$$E(S_{m_{t-p-k(n-1)-i}}) = \{(i, i+r + \sum_{j=1}^{(l-t)/(n-1)} m_{l-(j-1)(n-1)} \\ + \sum_{j=1}^{k} m_{t-p-(j-1)(n-1)}) \mid r = 1, 2, \dots, m_{t-p-k(n-1)} \}$$
for $i = 0, 1, \dots, n-2$ and $k = 0, 1, \dots, (t-p)/(n-1)-1$.

(d) Let t be the largest index such that $m_t = m$. Consider the collection of stars with edge sets

$$E(S_{m_{l-i}}) = \{(i, i + (n-1)/2)\}$$
 for $i = 0, 1, \dots, (n-1)/2 - 1$,
$$E(S_{m_{l-(n-1)/2-k(n-1)-i}}) = \{(i, i + r + \sum_{j=1}^{k} m_{l-(n-1)/2-(j-1)(n-1)}) \mid r = 1, 2, \dots, m_{l-(n-1)/2-k(n-1)}\}$$
 for $i = 0, 1, \dots, n-2$ and $k = 0, 1, \dots, (l-t)/(n-1) - 1$,
$$E(S_{m_{t-i}}) = \{(\infty, i + rp) \mid r = 0, 1, \dots, m_{t} - 1\}$$
 for $i = 0, 1, \dots, p-1$,
$$E(S_{m_{t-p-(n-1)/2-k(n-1)-i}}) = \{(i, i + r + \sum_{j=1}^{k} m_{l-(n-1)/2-(j-1)(n-1)} + \sum_{j=1}^{k} m_{t-p-(n-1)/2-(j-1)(n-1)}) \mid r = 1, 2, \dots, m_{t-p-(n-1)/2-k(n-1)}\}$$
 for $i = 0, 1, \dots, n-2$ and $k = 0, 1, \dots, (t-p-(n-1)/2)/(n-1) - 1$.

In each case, the given stars form a rotational decomposition of K_n .

References

- [1] C. J. Cho, Rotational Mendelsohn Triple Systems, Kyungpook Math J. 20 (1986), 5-9.
- [2] C. Lin and T. Shyu, A Necessary and Sufficient Condition for the Star Decomposition of Complete Graphs, J. Graph Theory 23(4) (1996), 361-364.
- [3] B. Micale and M. Pennisi, Cyclic Mendelsohn Quadruple Systems, Ars Combinatria 35 (1993), 225-236.
- [4] R. Peltesohn, A Solution to both of Heffter's Difference Problems (in German), Compositio Math. 6 (1939), 251-257.
- [5] M. Pennisi, On the Rotational Mendelsohn Designs, J. Combinatorics, Information and Systems Sciences, to appear.