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Abstract. In this paper, we define sn automorphism of a graph packing and
of a graph covering. We consider automorphisms which consist of a single cycle
(called cyclic) and give necessary and sufficient conditions for maximal eyclic
4-cycle packings and minimal cyclic 4-cycle coverings of the complete graph.

1 Introduction

A g-decomposition of (simple) graph G is a set v = {g1,92,..., gn} Of
isomorphic copies of graph g such that V(g;) C V(G) for ¢ = 1,2,...,n,
E(g;) N E{g;) = 0 for i & §, and U, s = G. That is, a g-decomposition
of G s a partitioning of F(G) into the edge sets E(g1), F(ga), ..., E(gn).
A large number of graph decompositions have been studied, in particular
cycle decompositions of the complete graph (see, for example, [11]). For
example, a Cs-decomposition of K, is equivalent to a Steiner triple system
of order v. For our purposes, we mention that it is well known that a
C'y-decomposition of K, exists if and only if v = 1 {mod 8).

An automorphism of a g-decomposition of G is a permutation, m, of
V(@) which fixes the set . If 7 consists of a single cycle of length |V(G)],
then the decomposition is said to be cyclic. A cyclic Steiner triple system
"of order v exists if and only if v = 1 or 3 (mod 6), v # 9 [12]. Many
other graph decompositions and types of permutations have been studied
(the literature on Steiner triple systems includes reverse automorphisms
[14, 18], k-rotational automorphisms [5, 13], and bicyclic automorphisms
).

When a g-decomposition of ¢ does not exist, we can ask the question
“How close to a g-decomposition can we get?” There are two approaches
to this question: packings and coverings. {The astute observer will no-
tice a parallel between packings and coverings of graphs and the concept
from analysis of inner and outer measure of a set, respectively.) A g-
packing of G is a set v = {g1,02,--.,9=} of isomorphic copies of g such
that E(g:) N E(g;) = § for 4 & j, and U;9: C G. We define the leave
of a packing as L = G\ Ul ,g; (that is, F(L) = E(G \UL,g;) and V(L)
is the set of vertices induced by F(L)). A number of graphs have been
studied in connection with the problem of finding maximal packings (with
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minimal leaves). Maximal Cs-packings of K, were explored by Schonheim
and Spencer [15, 17]. A Cy-packing of K, with minimal leave L exists if
and only if [16]

(1) if v = 0 (mod 2) then |B(L)] = v/2,

(2) if v = 1 (mod 8) then |E(L)| = 0,

(8) if v = 3 (mod 8) then |E(L)]| =3,

(4) if v = 5 (mod 8) then |E(L)| = 6, and

(5) if v = 7 (mod 8) then |E(L)| = 5. :
K4-packings of K, are studied in [1] and Cs-packings of K, in (8, 9]. Some
packings of noncomplete graphs have also been studied, for example some
cycle packings of K, — K, are studied in (2, 3]. An automorphism of a
g-packing of GG is a permutation, w, of V(G) which fixes . Notice that =
must also fix the leave L. If 7 consists of a single cycle of length |V (G)|,
‘then the packing is cyclic. A cyclic packing is mazimal if | E(L)| is minimal.
In the next section we explore maximal cyclic Cy-packings of K.

A g-covering of (simple) graph G is a set v = {g1, 43, ..., 9n} of isomor-
phic copies of g such that V(g;) C V(G) fori=1,2,...,nand G C U, g;.
We wish to treat U7, g; as a multigraph and E(U2_,¢;) as a multiset. With
this convention, we define the padding of a covering as the (possibly multi-
graph) P = UL ,g; \ G (to be explicit, as with the leave of 2 padding,
E(P) = BE(UL,9: \ G) and V(P) is the set of vertices induced by FE(P)).
Some graphs have been studied in connection with the problem of finding
minimal coverings (with a minimal paddings). Minimal Cy-coverings of X,
were explored by Fort and Hedlund [6]. A Cy-covering of K, with minimal
padding P exists if and only if [16]

(1) if v = 0 (mod 4) then |E(P)| = v/2,

(2) if v =2 (mod 4) then |E(P)| =v/2+2,

(3) if v =1 (mod 8) then |F(P)| =0,

(4) if v = 3 (mod 8) then |E(P)] = 5,

(8) if v = 5 (mod 8) then |[E(P)| = 2, and

(6) if v="7 (mod 8) then |E(P)| = 3.

Ce-coverings of K, are studied in [10]. Coverings have not been as exten-
sively studied as packings. To the autbor’s knowledge, the only covering
result which does not involve the complete graph concerns Cy-coverings of
Ky~ Ky [T]. Ao automorphism of a g-covering of G is a permutation, =, of
V(G) which fixes y. Notice that « must also fix the padding P. If & con-
sists of a single cycle of length |V(G)}, then the covering is cyclic. A cyclic
covering is minimal if |[E(P)| is minimal. In the final section of this paper,
we give necessary and sufficient conditions for the existence of a minimal
cyclic Cy-covering of K.

The orbit of sore subgraph g of G*under permutation 7 is {r*(g) i =
0,1,...,|V(G)] — 1}. the length of the orbit of g is the cardinality of the
orbit of g. Throughout this paper, we assume V(K,) = {0,1,...,v — 1}
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and that the cyclic permutation is (0,1,---,v — 1) (and hence all vertex
labels should be reduced modulo v).

Lemma 1.1 Let -y be a cyclic Cy-packing of Ky where v is odd. Then the
leave I of this packing satisfies |E(L)] = 0 (mod v).

Proof. If v is odd, then the length of the orbit of any edge of K, under a
cyclic automorphism is v. Since the orbits of the edges of K, partition the
set F(K,), then |E(L)| = 0 {mod v). ”

Lemma 1.2 Let vy be a cyclic Cy-covering of K, where v is odd. Then the
padding P of this covering satisfies |E(P)| = 0 (mod v).

Proof. As in the proof of Lemma, 1.1, the length of the orbit of any edge
of K, is v, the orbits of the edges partition the multiset E(K,)UE(P), and
so |E{P)} =0 (mod v). i

2 Maximal Cyclic C4—Packings of K,

A set of 4-cycles, B = {g1,92,.--,9m}, I8 a set of base blocks for a cyclic
Cy-decomposition (or packing or covering) if the orbits of the elements of
(B partition . To prove the existence of cyclic Cy-packings (and coverings)
of K,, we will present sets of base blocks.

Theorem 2.1 A mazximal cyclic Cy-packing of K, satisfies:
(1) of v =0 (mod 2), then |E(L)} =v/2,

(2) if v =1 (mod 8), then |E(L)| =0,

(3) if v =3 (mod 8), then |E(L)| =v,

(4) if v =5 (mod 8), then |E(L)| = 2v, and

(B) if v =17 (mod 8), then |E(L)| = 3v.

il Kl

Proof. We consider several cases.

Suppose v = 0 (mod 4). Then each vertex of K, is of odd degree.
Since each vertex of Cy is of even degree, then in the leave, each vertex
will be of odd degree. Therefore in a maximal packing, there must be at
least v/2 edges in the leave. Consider the blocks {[0,%,v/2,v/2+4 1] | i =
1,2,...,v/4 -1} U{[0,v/4,v/2,3v/4]}. This is a set of base blocks for a
cyclic Cy-packing of K, with leave I satisfying E(L) = {(4,v/2+3j) | j =
1,2,...,v/2},80 |E(L)] = v/2 and the packing is maximal.

Suppose v = 1 (mod 8). Consider the blocks {[0,4i—3,8{—3,4i—1} | ¢ =
1,2,...,(v~—1)/8}. This is a set «f base blocks for a cyclic Cs-decomposition
of K,.

Suppose v = 2 (mod 4). As in the case of v = 0 (mod 8), a maximal
packing must have a leave with at least v/2 edges. Consider the blocks
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{[0,4,v/2,v/2+14] | $=1,2,...,(v — 2)/4}. This set is a set of base blocks
for a cyclic Cy-packing of K, with leave L satisfying E(L) = {(4,v/2+ 7} |
j=1,2,...,v/2}, so |E(L)] = v/2 and the packing is maximal.

Suppose v = 3 (mod 8). By Lemma 1.1, we know that |E{L)| = 0 (mod
v). Since no decomposition exists when v = 3 (mod 8), in a packing it is
necessary that |E(L)| > v. Consider the blocks {[0,4¢—3,8{~3,4i—1} |7 =
1,2,...,(v—3)/8}. This set is a set of base blocks for a cyclic Cy-packing
of K, with leave L satisfying B(L) = {(j,(v —1)/2+34) | 5 =1,2,...,v},
so [E(L)| = v and the packing is maximal.

Suppose v = 5 (mod 8). By Lemma 1.1, we know that |E(L)| = 0 (mod
v). In this case, |E(K,)! = 2 (mod 4) and so |E(L)} = 2 (mod 4) is also
necessary. Therefore a cyclic packing with |£(L)| = 2v would be maximal.
Consider the blocks {[0,47~-3,8{—-3,4i~1] | i = 1,2,..., (v—5)/8}. This set
is a set of base blocks for a cyclic Cy-packing of K, with leave I satisfying
E(L) = {(37 (U"‘"?’)/Q'{"j)? (Jn (’U——l)/2~|—j) ’ J=12,... >'U}a 50 ]E(L)l = 2
and the packing is maximal.

Suppose v = 7 (mod 8). By Lemma 1.1, we know that |E(L)| = 0 (mod
v). In this case, |[E(K,)| = 1 (mod 4) and so |E{(L)| = 1 (mod 4) is also
necessary. Therefore a cyclic packing with |E(L)| = 3v would be maximal.
Consider the blocks {[0,4¢~-3,8{-3,4i—1]|i=1,2,...,(v—7)/8}. This set
is a set of base blocks for a cyclic Cy-packing of K, with leave L satisfying
E(L) = {(j, (v=5)/2+7), (4, (v-3)/2+7), (4, (v—1)/2+5)} | § = 1, 2,..., v},
so |E(L)| = 3v and the packing is maximal.

'3 Minimal Cyclic C4-Coverings of K,

We now address coverings.

Theorem 3.1 A minimal cyclic Cy-covering of K, satisfies:
(1) if v =0 (mod 4), then |E(P)] = v/2,

(2) ifv=1 (mod 8), then |[E(P)| =0,

(3) if v =2 (mod 4), then |E(P)| = 3v/2,

(4) if v =3 (mod 8), then |E(P)| = 3v,

(8) if v =5 (mod 8), then |E(P)| = 2v,

(8) if v =7 (mod 8), then |E(P)| = v.

Proof. We consider several cases.

Suppose v = 0 (mod 4). Then each vertex of K, is of odd degree. Since
each vertex of Cy is of even degree, then in the padding, each vertex will
be of odd degree. Therefore in a migimal covering, there must be at least
v/2 edges in the padding. Consider the blocks {{0,%,v/2,v/2 —~ 4] | i =
1,2,...,v/4—1}{J{[0,v/2,v/4,3v/4]}. This set is a set of base blocks for
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a cyclic Cy-covering of K., with padding P satisfying L(P) = {(j,v/2+] )
i=1,2,...,v/2}, so |E(P)| = v/2 and the covering is minimal.

Suppose v = 1 (mod 8). Then there is a cyclic Cs-decomposition of K,
as seen in Theorem 2.1, and so |F(P)] = 0.

Suppose v = 2 (mod 4). In this case, every block has an orbit that
contains a multiple of v edges (namely, either 2v or 4v). Therefore it is
necessary that |E(K,) + |BE(P)| = 6 (mod v). Since |E(K,)| is an odd
multiple of v/2, then |E(P)| must also be an odd multiple of v/2. Now
|B(K,)] + v/2 = 2 (mod 4), so |E(P)| = 3v/2 is necessary. Consider the
blocks {{0,4,v/2,v/2+ 4] | i = 1,2,...,(v — 2)/4} {[0,1,v/2 4 1,v/2}}.
This set is a set of base blocks for a cyclic Cy-covering of K, with padding
P satisfying B(P) = {(G,0/2+49) | § = 1,2, .,v/2} U{(,j +1) | j =
1,2,...,v}, s0 |E(P)| = 3v/2 and the covering is minimal.

Suppose v = 3 (mod 8). By Lemma 1.2, we know that [E(P)| = 0 (mod
v). In this case, |E(K,)| = 3 (mod 4) and so |E(P)| = 1 (mod 4) is also
necessary. Therefore a cyclic covering with |E(P)| = 3v would be minimal.
Consider the blocks {[0,4¢ — 3,8/ —-3,4i — 1] |i=1,2,...,{v+5)/8}. This
set is a set of base blocks for a cyclic Cy-packing of K, with padding P
satisfying E(P) = {(4, (v —5)/2 + 7), (4, (v = 3)/2 + ), (4, (v = 1)/2 + ) |
§=1,2,...,v}, so |B(P)| = 3v and the covering is minimal.

Suppose v = 5 (mod 8). By Lemma 1.2, we know that |E(P})| = 0 (mod
v). In this case, |[F(K,)| = 2 (mod 4) and so |E(P){ = 2 (mod 4) is also
necessary. ‘Therefore a cyclic covering with |E(P)| = 2v would be minimal.
Consider the blocks {[0,4¢ —3,8i — 3,4i — 1] | i = 1,2,...,(v+ 3)/8}. This
set is a set of base blocks for a cyclic Cy-packing of K, with padding P
satisfying E(P) = {(j,(v - 8)/2+ 1), (4, (v = 1)/2+ ) | s =1,2,...,v}, 50
|E(P)| = 2v and the covering is minimal.

Suppose v = 7 (mod 8). By Lemma 1.2, we know that |£(P)| = 0 (mod
v). Since no decomposition exists when v = 7 (mod 8}, in a covering it is
necessary that |E(P)} > v. Consider the blocks {[0,44—3,8i~3,4i~1] | i =
1,2,...,(v+1)/8}. This set is a set of base blocks for a cyclic C4-covering of
K, with padding P satisfying E(P) = {{(j,(v ~1)/2+7) |7 =1,2,...,v},
50 |E(P)] = v and the covering is minimal. B

4 Conclusion

Notice that in Section 2, we studied maximal cyclic Cy-packings, as applied
to the less general cyclic maximal Cy-packings. If we first require that the
packings are maximal and then explore the constraint of having a cyclic
automorphism, then Theorem 2.1 implies:
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Corollary 4.1 A cyclic mazimal Cy-packing of K, exists if and only if
v=0,1,2,4, or 6 (mod 8).

Similarly, Theorem 3.1 implies:

Corollary 4.2 A cyclic minimal Cy-covering of K, exists if and only +f
v=0,1, or4 (mod 8).

Therefore, Theorem 2.1, Theorem 3.1, Corollary 4.1, and Corollary 4.2 give
us necessary and sufficient conditions for (respectively) the existence of a
maximal ¢yclic Cy-packing, a minimal cyclic Cs-covering, a cyclic maximal
Cy-packing, and a cyclic minimal Cy-covering of K.
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