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Abstract. There are twenty orientations of the 4-cycle with a pendant edge.
We give necessary and sufficient conditions for the decomposition of the complete
symmetric digraph on v vertices into each of these digraphs.

1 Introduction

A g-decomposition of (simple) graph G is a set v = {g1,92,..., gn} Of
isomorphic copies of graph g, called blocks, such that V(g;) C V(G) for
i=1,2,...,n, E(g)NE(g;}) = 0 for i # j, and UL, 9 = G. That
is, a g-decomposition of G is a partitioning of E(G) into the edge sets
E(g1), E(92),- -, E(gn)- The definition of a decomposition of a digraph is
similarly defined, with edge sets replaced with arc sets.

Graph and digraph decompositions are a widely studied area of design
theory [3]. Probably the best known graph decompositions involve decom-
positions of the complete graph on v vertices, K, into cycles of a given
length. For example, a 3-cycle decomposition of K, is equivalent to a
Steiner triple system and exists if and only if v = 1 or 3 (mod 6) [9]. It is
well known that a 4-cycle decomposition of K, exists if and only if v = 1
(mod 8). Many other decompositions of K, into copies of small graphs
have been studied [4]. Of particular interest to us, is a decomposition of
K, into copies of I = C3 U {e}, the 3-cycle with a pendant edge. These
exist if and only if v = 0 or 1 (mod 8) [2]. A decomposition of K, into
copies of H = Cy U {e}, the 4-cycle with a pendant edge, exists if and only
if v =0or 1 (mod 5), v # 10 [1].

Two nonisomorphic digraphs are determined by putting an orientation
on a 3-cycle: The 3-circuit and the transitive triple. A decomposition of the
complete symmetric digraph on v vertices, Dy, into 3-circuits is equivalent
to a Mendelsohn triple system of order v, and such systems exist if and
only if v = 0 or 1 (mod 3), v # 6 [8]. A decomposition of D, into transitive
triples is equivalent to a directed triple system of order v and such a system
exists if and only if v = 0 or 1 (mod 3) [7]. There are four orientations of
a 4-cycle. These are given in Figure 1. A 4—circuit decomposition of D,
exists if and only if v = 0 or 1 (mod 4), v # 4 [10]. An X —decomposition of
D, exists if and only if v = 0 or 1 (mod 4), v # 5, a Y —decomposition of D,
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exists if and only if v = 0 or 1 (mod 4), v ¢ {4, 5}, and a Z—decomposition
of Dy, exists if and only if v = 1 (mod 4) [6].

Eight digraphs are determined by putting an orientation on the graph
L = C3U {e}. Necessary and sufficient conditions for the existence of a
decomposition of D, into each of the orientations of L == C3U{e} are given
in [5]. Twenty digraphs are determined by putting an orientation on the
graph H = C, U {e}. Half of these digraphs are given in Figure 2 (the
others are the converses of those given). We denote the digraph of Figure 2
which is labeled Cy; as [a, b, ¢, d; €]cq;, the digraph which is labeled X1; as
[@, b, ¢, d; €] x1i, and so forth. The purpose of this paper is to give necessary
and sufficient conditions for the existence of a decomposition of I, into
each of the orientations of H.

b c b c b C

a d a d a d
X Y Z

Figure 1. The four orientations of a 4-cycle are the 4-circuit and the
graphs X, Y, and Z given here.

2 The Decompositions

In this section, we give necessary and sufficient conditions for the existence
of a decomposition of the complete digraph into each of the twenty digraphs
of Figure 2. Decompositions into the converse of these digraphs follows
trivially. Since D, has v(v — 1) arcs and each digraph of Figure 2 has 5
arcs, we have the following necessary condition.

Lemma 2.1 If a decomposition of D, into one of the digraphs of Figure 2
exists, then v =0 or 1 (mod 5).

We now show that certain decompositions do not exist for some small values
of v.

Lemma 2.2 The following decompositions of D, do not exist: an Xo;
decomposition of Ds, an Xg. decomposition of Ds, a Y1; decomposition of
D, forv = 5,6, aYi. decomposition of D, for v = 5,6, a Z,; decomposition
of Dy, a Zi. decomposition of Ds, a Zg; decomposition of Ds, and o Zoe
decomposition of Ds.
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b b

Figure 2. Here are half of the orientations of a 4-cycle with a pendant
edge. The converses of these are the other ten orientations. We denote
the converse of each A,; as 4, for A€ {C, X,Y,Z} and n € {1,2,3,4}.
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Proof. Since a decomposition of D, into a particular given digraph is
equivalent to a decomposition of D, into the converse of the given digraph,
we only establish the nonexistence of decompositions in the cases for which
the pendant arc points into the oriented 4-cycle. '

Case 1. An Xzz-'decompoéition of Ds does not exist. A computational
argument for this result is given in the appendix.

Case 2. A Y}; decomposition of D5 does not exist. Suppose, to the con-
trary, that such a decomposition does in fact exist. We claim that
such a decomposition cannot have two blocks of the form B; =
[a1,b1,2,d1;e1]y1i and By = [ag,b2,2,da; e3]y1;. For, if the decom-
position does contain B; and Bz where By # Ba, then vertex z has
out-degree 4 in digraph B U By. The decomposition of Dy consists
of 4 copies of Yi;. The remaining two blocks containing z must be of
the form B3 = [w, b3, ¢s,ds; es]y1; and By = [z, by, ca, d4; e4]y1i. Now
z has out-degree 4 and in-degree 6 in digraph By U By UB3U By. This
is a contradiction because in Dy,  has in-degree 4 and therefore the
decomposition cannot include blocks of the forms By and Bs.

Let V(Ds) = {1,2, 3,4, 5}. Without loss of generality, one block of the
decomposition is By = (1,2, 3, 4; 5]y1:. In By, vertex 1 has in-degree
3 and ouft-degree (. Next, in order to get the in-degree of vertex 1 up
to 4, vertex 1 must be in a block Bj either of the form [a, 1, ¢, d; €]y1;
or of the form [a,b,c,1;e}y1;. But then ¢ # 1 (1 is already a vertex
of block Bs), ¢ # 2 (since arc [2,1] is in B1), ¢ # 3 (by the earlier
claim applied to blocks By and Ba), ¢ # 4 (since arc [4,1] is in By),
and ¢ # 5 (since arc [5,1] is in B1). These contradictions imply that
no such decomposition exists.

Case 3. A Yy; decomposition of Dg does not exist. Suppose, to the con-
trary, that such a decomposition does in fact exist. Such a decom-
position cannot have two blocks of the form By = [a1, b1, %, d1; e1]v
and By = [ag, bg, z, d2; €3]y 1. Suppose it does contain blocks By and
B;, where B) # B,. (1) Suppose Bz = [a3, %, ¢3, d3; es)]y1; is a block.
Then z has out-degree 5 and in-degree 1 in By U By U Bs. Then z is
in 2 more blocks. The only way to get the in-degree of z up to 3 is
to have z in a block of the form By = [z, ba, ¢4, d4; e4)y1;. Now x has
out-degree 5, in-degree 4 in By U B U Bs U By. But z cannot be in
a Bs such that = has out-degree 0 and in-degree 1 in Bgs. So no such
decomposition exists. (2) Suppose Bs = [a3,b3,c3,%; €3]y This
leads to the same contradiction as (1). (3) So the remaining 3 blocks
containing z must be of the forms: [z,b,¢c,d; ely1s, [, b, 2, d; €]y, OF
[a,b, ¢, d; Z]y1i. But no combination of these three blocks with B and
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B3 yield out-degree 5, in-degree 5 for . Hence no such decomposition
exists.

Case 4. A Z1; decomposition of Dy does not exist. Suppose, to the con-
trary, that such a decomposition does in fact exist. Let [a,d, ¢, d; €]z1;
be a block of the decomposition. Then vertex a is of in-degree 3 in this
block and of in-degree 4 in Dy. Since no vertex of Z1; is of in-degree
L, then no such decomposition exists.

Case 5. A Zy; decomposition of Dy does not exist. Suppose, to the con-
trary, that such a decomposition does in fact exist. Then there are 4
copies of Zy; in this decomposition. In Zy; = [a, b, ¢, d; €] z2;, only one
vertex (vertex e) is of odd out-degree. So if By = [a1, b1, ¢1,d1; %) z2: is
a block of such a decomposition then, since vertex z is of out-degree 4
in Dg, then there must be another block of By = [lg, ba, ¢a, do; x] 22: #
Bj in the decomposition. But then vertex x has in-degree 0 and out-
degree 2 in digraph B U Bs. Therefore, vertex x must be of in-degree
4 and out-degree 2 in the remaining two blocks. However, it is not
possible for two copies of Zs; to satisfy this condition. Hence, no such
decomposition exists. =

We now show that the necessary conditions of Lemmas 2.1 and 2.2 are
sufficient.

Theorem 2.3 A decomposition of D, into each of the digraphs of Figure 2
exists if and only if v =0 or 1 (mod 5), with the following exceptions: For
Xo; and Xoo, v # 5; for Yi; and Yie, v € {5,6}; for Zy; and Zi., v # 5;
and fOT‘ Zo; and Zze, v 75 5.

Proof., The necessary conditions follow from Lemmas 2.1 and 2.2. We
now establish sufficiency in several cases. In cases 1-8, reduce vertex labels
modulo v when v = 1 (mod 5) and reduce vertex labels modulo v ~ 1 when
v =0 (mod 5).

Case 1. For a Cy; decomposition of D, for v = 5¢, consider: {[j,1+ 27 +
598 —244,60 -3 -2+ 53 -2—i+jleas|t=0,1,...,0-2,7=
0,1,...5—2}U{[j,2¢+3,00,30+5; 26 —-1+4lca; | 7 =0,1,...,50—2}.
For a Cy; decomposition of D, for v = 5+ 1, consider: {[4,1 + 2¢ +
550+ 5,60 -1 - 20+ 528 +1+i+jleu |i=0,1,...,0—1,5 =
0,1,...,5¢}

Case 2. For an Xy; decomposition of D, for v = 54, consider: {[j, £+ 1+
G l—14+540 -2 —i+ 550 ~2—i+Fflea}i=0,1,...,0 -2, =
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0,1,...,5¢ =2} U{[5,26 — 1+ j,00,3, — 1+ 5;4 — 1+ jloas | 7 =
0,1,...,50 — 2},

For an X;; decomposition of D, for v = 10 + 1, consider: {[4,2 +
54+ 7,4+ 10i+4,3+5i+ ;100 - 10+ flx1: | 4=0,1,..., £~ 1,7 =
0,1,...,10} U{[5,10£ — 3 — 5¢ + 4, 10+, 10 — 4 — 5i+ j; 106 — 5 —
106+ x| §=0,1,...,0 -1, =0,1,...,10€},

For an X;; decomposition of D, for v = 10£ + 6, consider: {[7,2 +
5+ 4,44+ 100+ 5,3+ 5+ 73106+ 5 — 10i -+ f]x1: | ¢ = 0,1,...,4,f =
0,1,...,100+5}U{[j, 108+2 55+, L0€+5+, 108+ 1 - 5i+ f; 106 —
106+ flx1i | i =0,1,...,6 — 1,5 =0,1,...,10¢ + 5}.

Case 3. For an X,; decomposition of I, for v = 5¢, { > 2, consider:
{lg1+i+ 4,4+ 4,0+1+i+ 7 —i+flx2|i=0,1,...,£—-2,7 =
0, 1,.. .,5€“2}U{[j, 2£—1+j,4€*1+j,00; 1+j]X2i I .7 = 0: 1... ’SEH"
2}.

For an X,; decomposition of D, for v = 10£ + 1, consider: {{7,10€ —
1—-5i+ 4,106 -3 —-10i+ 5,10 — 2 — 5 + 551 + 106 + jlxo: | ¢ =
0,1,...,£—~1,7=0,1,...,108} U {[§, 4 -+ 5i + 5,8 - 10i + 5,3 + 55 +
§6+ 106+ glx2 [4=0,1,....4—1,5=0,1,...,108}.

For an Xa; decomposition of D, for v = 10£+6, consider: {[j, 106+4—
51+7,10£+2—10i+ 7, 106+3—5i+j; 1+10i+f]x2: | ¢ = 0,1,..., 4,5 =
0,1,...,100+5}YU{[j,4 +5i + 7,8+ 105+ 4,3 + 5i + 5; 6 + 107 -+ 5] x 2 |
i=0,1,...,—1,j=0,1,...,100+ 5}.

Case 4. For an X3, decomposition of D, for v = 5{, consider: If £ = 1

then take {[j,00,1 + 4,2+ 53+ Jlxs: | 7 =0,1,2,3} and if £ > 2
then take {[§,20+ i+ 5, -1+, -2 —i+ 50 —i+4flxs | & =
0,1,...,4—3,5=0,1,...,50-2YU{[,30—2+4,6 — 1+, 4€+j; 30+
Fx36: 15y 00,80 — 2+ 5,1 + 5520 4 jlxs: | 7=0,1,...5¢ — 2}.
For an X3; decomposition of D,, for v = 10+ 1, consider: {[4,1+5i+
G A+ 105+ 5,2 456+ ;108 — 4 — 106 + jlxa: | i =0,1,..., 6~ 1,7 =
0,1,...,10€} U [§,10¢ —4 — 5i + j,10£ — 7 — 10 + 5,10£ — 3 — 5i +
51106 —9 — 106 + jlxs: | i =0,1,...,£ — 1,5 =0,1,...,10€}.

For an X3; decomposition of D, for v = 10¢ + 6, consider: {[j,1 +
51+ 4,4+ 106+ 7,2 +5i+ 5;106 4+ 1 - 106 + f]x3: | 1 = 0,1,...,¢,7 =
0,1,..., 10+ 5}U{[4,10£+1 —5i+ 5,10£ - 2 - 10i 4 7, 10£ + 2 - 5i -
53106 —4 — 10i + jlxa |1 =0,1,...,0~ 1,5 =0,1,...10£ + B}.

Case 5. For an X4; decomposition of D, for v = 5¢, consider: If £ = 1 then
take {[4,3 + 00,1 + #;2 4+ jlx4a: | 7 = 0,1,2,3}, if £ = 2 then take
{1,844, 4+3, T43; 5+4] x4, 1, 2+, 00, 6-+; 8+4]x4: | 5 = 0,1,...,8},
and if £ > 3 then take {[j, £+ 1+i+7, 47, 46—1—i+7; 50— 2—i+7] x4i |
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1=0,1,...,£-3,7=0,1,..., 5 =2} U{[5, 44+ 5, £+ 2+ 5,30 + 1 +
For an X4; decomposition of D, for v = 104 4 1, consider: {l4,2 +
5i+7,14+4,10 ~1 — 545,10 — 20i+ f]xq45 | 1 =0,1,...,6 —1,§ =
0,1,..., 10} U {[4,3+5i + 4, 10€ + 5,4 + 5i + 7, 10£ — 5 - 103 + ] x4; |
i=0,1,...,6—1,7=0,1,...,10¢}.

For an Xy4; decomposition of D, for v = 10£ + 6, consider: {[4,2 +
5(+ 4,1+ 5,100 4-4 —5i+ 3106 -+5 —10i + jlx4: [ 1 = 0,1,...,8,j =
0,1,...,100+5}U{[f,3+5i+7, 100454 4,44 5i+5; 108 — 107+ 5] x4 |
i=0,1,...4-1,7=0,1,...,10¢ + 5}.

Case 6. For anYy; decomposition of D, for v = 8¢, v # 5, consider:
{[j,5€*2m5i+j,5€—7—10i+j,5£ﬁ5~5Z‘+j;5f—4—-5i+j}y1?;I
i=0,1,...,£-2,5=0,1,...,50 -2} U{[§,00,4+ 7,3+ 52+ 5]y |
Jj=0,1,...,5¢ -2},

For a Y1; decomposition of D,, for v == £+ 1, v # 6, consider: {[j,5¢—
1~ 55+ 5,50 — 6~ 10i + 5,50 — 3 — 5i + §; 50 — 5i + ]y | i =
0,1:$£_35.7":‘0:1$15g}U{[J:4+J:5+3a2+Ja10‘|‘J]Y1zIJ:
0,1,...,5Y U{[f,9+5,15+4,7+ ;54 jlyni | § =0,1,...,5¢}.

Case 7. For a Yy; decomposition of D, for v = 54, consider: {[4,1 + 5i +
5250 =2+ 5,50 — 6 ~5i+ §;50 — 4 — Bi+ jlyes | i =0,1,...,4—2,§ =
0,1,...50 -2} U{[5,50 -3 +7,00,3+7;1+j]yes | § = 0,1,...,50 —2}.
For a Ys; decomposition of D, for v = 5¢ + 1, consider: {[7,2 + 5i +
508 =147, 1+5i+7;5+5i+4)yz | i = 0,1,...,8~1,5=0,1,...,5¢}.

Case 8. For a Y3; decomposition of D, for v = 54, consider: {[§,2 + 5i +
Gy T+100+7, 4458+ 7; 345i+7lys: | 1 = 0,1,...,£-2,=0,1,...,5(—
2YUL[5,52 -3+ 4,5 —4+ 3,005 — 24 jlysi | 5=0,1,...,50 -2},
For a Y3; decomposition of D, for v = 5£+1, consider: {[, £4+1+2i+
5,8+ 5 0+ 24 20+ 5,50 ~i+Flys; [i=0,1,...,6—1,5=0,1,...,56).

Case 9. For a Z); decomposition of D, for v = 0 (mod 5), we present a re-
cursive argument. First, to show that a Zy; decomposition of D1y ex-
ists, suppose the vertex set of Dyg is {01, 11,21, 31,41, 02, 12, 22, 32,45 }.
Consider the blocks: {[02, 01,42,24; 12]211', [42, 29,32, 19; 31]2'11', [02, 31,
12,11;541) 214, 22,21, 19,415 32] 214, [L2,02,42,32;01) 214, [22,01,32,31;
11)z1i, {32,11, 42,413 21) 214, [02, 22, 12,425 32] z14, [22, 02, 32, 42; 12] 214,
[01,02,41, 295 11] 214, 41, 21,31, 113 32] 214, [01,32, 11, 125 40) 21, [21, 22,
11,42;31) 215, [11,01,41,31;02) 214, [21,02, 31, 32; 12] 714, [31, 12,41, 40;
23] 713, (01,21, 11,413 31) 214, 21,01, 31,435 11 714}

We now show that Zy; decomposition of Ds, exists for all £ > 2. We
do so recursively and establish this result by induction. We have seen
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that there is a decomposition for £ = 2. Now suppose that such a de-
composition exists for £ = k. Then there exists a Z1; decomposition of
Dy, where the vertex set of Dy, is V' = {01, 11, 23, 31,41, 02, 12, 22, 35,
day. .., 0k, L, 28, 31, 4;;,}. Consider Dsgr5 with vertex set V' U {Ok+1:
Lit1, 26415 3641, 4k+1}. Add to the decomposition of Ds, the follow-
ing: {[Ok41,01, 4k+1: 215 Lit1] 2160 [Lht15 2k415 Bkt 15 Liot15 31]) 214, [Okr1,
31 Yot 11340 214 (2415 215 Lit10 413 3k+1) 21465 [Liet1, Oktr, Qi 1, Ska1;
01 214 2641, 01, k415 313 L) z145 [Bet1, L1y At 15415 20] 214 [Okp1s 20015
Leats 4415 Bkt1) 214, (2041, Ok 1, g1y A 13 Laa1) z1s FU{[44, 24, 04, 0y
3517145 (04,35, Liy 153 44 214y (L6, 45, 24, 255 05) 214, (24,05, 34, 355 15] 214, [3s
1j:4i;4j;2j]Z1i | githeri = k+1landj = 2,3,...,k or i = k+
land¢=2,3,...,k}

For a Zy; decomposition of D, for v = 5¢ + 1, consider: {[4,2 + 54 -

5,98 ~1+7,34+5i+4;14+5i+5]z1: | ¢ =0,1,...,£-1,5 =0,1,...,5¢}.
Here, reduce vertex labels modulo v.

Case 10. For a Zy; decomposition of D,, for v = 0 (mod 5), we present a re-
cursive argument. First, to show that a Zs; decomposition of Dy ex-
ists, suppose the vertex set of Do is {01, 11, 21,21, 44, 02, 12, 22, 32,42 }.
Consider the blocks: {[13, 09, 32,42; 2] z2:, {02, 12, 32, 22; 42] 224, [L2, 22,
42,32; 31)z2i, (02,32, 22,42i21)72:, [02,11,42,41;23)22:, [L2,21,02,01;
4] z2is [22,31,12,11541]2:, [32,41,22,21;01] 224, [42, 01, 32, 315 L1]a:,
{[L1, 01,831,415 21} z2s, [01, 11, 31, 215 41] z24, {11, 21,41, 315 32] 224, [01, 31,
21,413 23] 224, [01,12,41,42;21] 224, [11,22,01,02;41]) 22, (21,32, 11, 12;
4s)2:, [31,42, 21, 22; 02) z2:, [41, 02,31, 32; 12]2:i}

We now show that Zy; decomposition of Ds; exists for all £ > 2. We
do so recursively and establish this result by induction. We have seen
that there is a decomposition for £ = 2. Now suppose that such a de-
composition exists for £ = k. Then there exists a Z; decomposition
of Dy, where the vertex set of Dy is V = {01, 14,22,31,41,09,12, 25,
32,42,...,0k, 1%, 2, 35,4r}. Consider Dgpys with vertex set V U
{04415 Let1,s 2641, 3641, 4k1 }- Add to the decomposition of Dy, the
following:  {[1g41,0r41, 3k+1s 4k} 2641] 220 [Okt15 Lot1s By 2h413
d1]z26s [Lea1s 210 Dkt1s B6+15 31) 226, [Ok1s Bty 241, k1 21] 220
[Ok+1, 11, 4k s1y 415 2641} 2260 [Let1, 21, Okr15 005 41 2265 (2041, 315 1it1,
113 41)24, Bra1, 41, 2641, 215 01) z2is [4h415 015 Bk1, 315 1 Jos U{[04, 05, 3,
443 24)z14 [Lss 15, 44,053 3] 214, (26, 25, 04, 155 45] 214, 34, 35, 14, 245 05] 214,
[4¢,47,24,35;15]21; | eitheri = k4 landj = 2,3,...,korj =
k+1landi=2,3,...,k}.

For a Z3; decomposition of D, for v = 5¢ 4 1, consider: {[§,5{ -1 —
5i+ 5,245,850 -2-5i+45;80—4—-5i+Fgai |1=0,1,...,0 1,5 =
0,1,...,5¢}. Here, reduce vertex labels modulo v.
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In each case, the presented blocks form a decomposition of D,. Corre-
sponding decompositions of D, into each of the converses of the digraphs

of Cases 1-10 immediately follow. 8
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Appendix

In this appendix, we give an argument that no Xo; decomposition of
Dy exists. Notice that the only vertex of [a, b, ¢, d; €] x2; which is of odd in-
degreeis d. Soif By = |a;, by, €1, %; €1) x2: is a block of such a decomposition
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then, since vertex x has in-degree 4 (even)} in Ds, another block of the
decomposition must be of the form By = [ag, bg, ¢2, Z; €2| x2; # B1. Now let
the vertices of Dy be vy, vy, v3, v4, U5 and let the blocks of a decomposition
be By, By, Bz, By. Without loss of generality, By = [v1, V2, vs, V4] Us] x2:- By
the above argument, we know that another block of the decomposition (say
block Bsp) is of the form Bs = [ag, ba, ¢2, V4 €2] x2; Where {ag, ba, 2,62} =
{v1,v2,v3,v5}. Notice that there are 4! ways to assign vertices vy, va, V3, Us
to the positions ag, bg, ¢z, ez in block By. Now if block Bs is of the form
[as, bs, c3, vs; €3] x2; then block By must be of the form [a4, by, ¢4, v;; €4] x 24,
again by the above argument. There are 5 ways to assign a vertex to vertex
v; in blocks B3 and Bs. There are then 4! ways to assign the remaining
vertices to positions as, bs,cs,es3 in block Bs and 4! ways to assign the
rermaining vertices to positions ag, b4, ¢4, €4 in block Bs. Hence, there are
41 x 41 x 41 x § == 69, 120 different ways to assign the 5 vertices of to blocks
B, By, B3, By. If such a decomposition exists, then it must be one of these
~ possibilities. The authors have written a program to test these possibilities
and none of them yield a decomposition. (The authors readily admit that
there must be a more elegant argument for this—Dys and Xg; each contain
5 vertices, so certainly reducing this to 69,120 cases and then beating them
death cannot be the best method!)
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