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Abstract A Steiner triple system of order v, denoted S7 S(v), is said to be tricyclic
if it admits an automorphism whose disjoint cyclic decomposition consists of three
cycles. In'this paper we give necessary and sufficient conditions for the existence of a
tricyclic ST §(v) for several cases. We also pose conjectures concerning their existence
in two remaining cases.
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1 Introduction

A Steiner triple system of order v, denoted ST S(v), is a v-element set, X, of points;
together with a set B, of unordered triples of elements of X, called blocks, such that
any two points of X are together in exactly one block of 8. It is well known that a
ST §(v) exists if and only if v = 1 or 3 (mod 6). For a general review of triple systems
in general, see [5]. An automorphism of a ST'S is a permutation 7 of X which fixes
B. A permutation 7 of a v-clement set is said to be of type [#] = [r), m2, ..., 7]
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il the disjoint cyclic decomposition of 7 contains ; cycles of length i (therefore
>i=1imi = v). The orbit of a block under an automorphism 7 is the image of the
block under the powers of 7. A collection of blocks B is said to be a collection of base
blocks for a STS under the permutation m if the orbits of the blocks of B produce the
ST'S and exactly one block of B occurs in each orbit. '

Several types of automorphisms have been explored in connection with the question
“For which orders v does there exist a ST S(v) admitting an automorphism of the given
type?” A cyclic ST S(v) is one admitiing an automorphism of type [0, 0, ..., 0, 1] and
exists if and only if v = 1 or 3 (mod 6) and v # 9 [8]. A k-rotational ST S(v) admits
an automorphism of type [1,0,0,...,0,4,0,...,0]. A l-rotational ST S(v) exists
if and only if v = 3 or 9 (mod 24) and a 2-rotational ST S(v) exists if and only if
v=13729 15o0r 19 (mod 24) [9]. A 1-rotational Steiner triple system can also
be viewed as a ST'S which admits an automorphism group that acts sharply transi-
tively on all but one point [1]. A k-transrotational ST'S(v) admits an automorphism
of type [1, 1,0,0,...,0,%,0,0,0] and with £ = 1 such a system exists if and only
ifv =17 9o0r 15 (mod 24) [7]. A bicyclic ST S(v) admits an automorphism of
type [#] ={0,0,...,0,1,0,...,0,1,0,...,0] where gy =y = 1, M < N and
M -+ N = v. That is, the disjoint cyclic decomposition of 7 consists of one cycle of
length M and another (larger) cycle of length &. Such a bicyclic ST S(v) with M > 1
existsifandonlyif M = lor3(mod 6), M # 9,M | N,andv = M+N = 1 or3 (mod
6) [2,3,6]. Notice that a f-rotational S7'S is a special case of a bicyclic $T'S, but the
existence of 1-rotational ST Ss does not fit the same patiern as bicyclic ST'Ss (i.e., we
cannot simply take M = 1 in the previously stated conditions for bicyclic ST Ss to get
the conditions for 1-rotational ST Ss). Another related structure is a reverse ST S(v).
Such a structure admits an automorphism of type 7] = [1, (v — 1)/2,0,...,0] and
exists if and only if v = 1, 3, 9, or 19 (mod 24) [10].

The purpose of this paper is to explore several categories of Steiner (ri-
ple systems which admit an automorphism consisting of three disjoint cycles.
Therefore we define a tricyclic STS(v) to be one that admits an automorphism
either of type [0,...,0,3,0,...,01, [0,...,0,1,0,...0,2,0,...,0], or of type
0,...,0,1,0,...,0,1,0,...,0, 1,0, ..., 0]. We classify tricyclic Steiner triple sys-
tems admitting an automorphism of the first two types in Sect. 2. In Sect. 3, we give
necessary and sufficient conditions for the existence of a Steiner triple system admit-
ting an automorphism of the third type in the case when the smallest cycle of the
automorphism is of length one. In Sect. 4, we give two conjectures concerning the
remaining cases for the third type of automorphism.

2 Some Special Tricyclic Steiner Triple Systems

From the existence of a cyclic ST S(v) we readily have:

Theorem 1 A tricyclic STS(v) admitting an automorphism of type [0,...,0,3,
0, ..., 0] exists if and only if v = 3 (mod 6).

Progf Of course the condition v = 3 (mod 6) is necessary. For all such v, except
v = 9, there is a cyclic ST S(v). Simply by cubing the cyclic automorphism, we see
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that the systems are also tricyclic, The affine plane over Zs is equivalent to a ST S(9)
and every translation of this affine plane is obviously an automorphism of the required
type for the S7.5(9). ]

Similarly, we can establish the existence of a large class of tricyclic ST 8s from the
existence of the bicyclic ST Ss. Here, and throughout, we represent the ordered pair
(x, ¥) as the subscripted pair x,.

Theorem 2 A tricyclic ST S(v) admitting an automorphism of type [x]1=1[0, ..., 0, 1,
0,...,0,2,0,...,0lwherempyy =1, iy =2and M > 1 exists if and only if M = 1
or3 (mod6), M #9, M | N andv = M + 2N = 1 or 3 (mod 6).

Proof First, suppose there is such a system with the point set Z s | Zy x Zo admitting
the automorphism 7 = (0,1,..., M — 1)(0p, lg,..., (N — D)0y, 11, ..., (N —
1}1). It is rather casy to see that the fixed points of an automorphism form a subsys-
tem of a STS (i.e., if two points of a triple are fixed by the automorphism, then the
third point of the triple must also be fixed by the automorphism). By considering 7z ¥
we see, therefore, that such a ST 8(v) has a cyclic subsystem of order M. Therefore,
M =1 or 3 (mod 6) and M # 9 is necessary. Also, such a ST .§ must contain some
block of the form (x, y;, z;) where x € Z and y;, Zj € Zy X 7. By applying 7% to
this block, we see that (7 (x), y;, z i) must also be a block of the ST'S and therefore
a¥(x)=xand M | N is necessary.

To establish sufficiency, suppose M and N satisfy the stated conditions. Then there
is a bicyclic ST'S(v) admitting an automorphism consisting of a cycle of length M
and a cycle of length 2. By considering the square of this automorphism, we see that

the bicyclic ST S(v) is also tricyclic and admits an automorphism of the desired type.
0

Notice that 2-rotational and I-transrotational S7'Ss are also examples of tricyclic
ST'Ss.

3 Tricyclic Steiner Triple Systems for Which the Smallest Cycle is of Length
One

We now turn our attention to ST Ss admitting automorphisms of type [z] = [1, 0, .. .,
0,1,0,...,0,1,0,...,0)lwhere ), =gy =ay =L, v=M+N+1l,and M < N.
In our discussion, we will let the point set of such a system be {00} U Zps x {0} | Zy x
{1} and let the automorphism be 7 = (00)(0g, 19, ..., (M — 1)g)(01, 11, ..., (N —
1)1). As in the proof of Theorem 2, by considering 7™, we see that the ST S(v)
contains a 1-rotational subsystem of order M + 1. Therefore we have:

Lemma 1 If a wricyclic STS(v) exists admitting an automorphism of the type
[7}]=1[1,0,...,0,1,0,...,0,1,0,...,0lwhere m; =mpy =ny = | then M =2
or 8 (mod 24).

Also, insuch a ST S there must be some block of the form (xo, yy, z1). By considering
the image of this block under 7%, as in Theorem 2, we have:
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Lemma 2 [f a tricyclic ST S(v) as described in Lemma 1 exists, then M | N.

With a pair of points of the form (x1, y1) we associate a pure difference of type 1 of
min{(x — y)(mod N), (y — x)(mod N)}. With a pair of points of the form (xg, y{)
we associate the mixed difference (y — x) (mod M). The set of pure differences
of type 1 is {1,2,..., N/2} and the set of mixed differences is {0, 1,..., M — 1}.
A collection of base blocks for the desired type of ST S must contain a block of the form
(00, x1, (x + N/2)1). Notice that this block contains a pair of points with the associ-
ated pure difference of type 1 of N /2. Therefore, constructing the desired type of ST S
1s equivalent to presenting a collection of blocks on the point set Z s x {0} | Zy x {1}
such that the differences associated with the pairs of points of these blocks precisely
cover the set of pure differences of type 1 of {1,2, ..., N/2 — 1} and the set of mixed
differences of {0, 1, ..., M — 1}. Such a collection of blocks along with a collection
of base blocks for a 1-rotational ST S(# + 1) on the point set {oo} | J Zys x {1} (under
the obvious automorphism) and the block (o0, 01, (N /2)1) form a collection of base
blocks for a tricyclic ST'S(1 -+ M + N) with a 1-rotational subsystem under 7.
We have a final necessary condition:

Lemma 3 If a tricyclic STS(v) as described in Lemma 3.1 exists, then N = kM
where k = 2,3,6 or 11 (mod 12) whenever M = 2 (mod 24). If M = 8 (mod 24),
then k = 0 or 2 (mod 3).

Proof A base block of the form (xp, ¥1. 21) covers two mixed differences and one
pure difference of type 1. One of the mixed differences must be congruent to the
sum of the other two differences modulo M. Since M is even, either zero or two of
these differences is/are odd. If 3| NV, then a possible base block is one of the form
(xt, (x +N/3), (x +2N/3)1). A block of this type is said to be a short orbit block
since the length of its orbit under 7 is precisely one-third the length of the orbit of
any other block on the points Zy x {1}. A short orbit block covers the pure difference
of type 1 of N/3 only, and N /3 is even. A base block of the form (x1, y1, z1) (other
than a short orbit block) covers three distinct pure differences of type 1. These three
differences satisfy either the condition that one is the sum of the other two, or the
condition that all three sum to O modulo N. In either case, either zero or two of these
differences is/are odd. So, a collection of blocks of the form (xo, y1, z1) or (x1, y1, 21)
covers an even number of odd differences. Therefore, the number of odd differences
intheset {0, 1,..., M — 1}{J{1, 2, ..., N/2— 1} must be even. From this, the lemma
follows. O

We now show that the necessary conditions of Lemmas 1-3 are sufficient in a series
of constructions.

Lemmad If M = 2 (mod 24) and k = 2,3,6 or 11 (mod 12), then there exists a
tricyclic ST S(v) as described above.

Proof Consider the given collections of blocks.
Case 1. Suppose that M = 2 (mod 24) and k& = 2 (mod 12).
If M =26 and k = 2, consider the following collection of blocks:

(01, 71, 181), (01, 81, 171), (01, 1341, 251), (04, 14y, 24}), (00, 01, 261),
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(0, 01, 151}, (0o, 11, 171), (0o, 81,281), (00, 71,291, (0o, 11y, 301), (o,
101, 311},

(00, 91, 321), (0o, 124, 181), (Op, 131, 161), (Og, 144, 191), (0p, 201, 241), (Oy, 23,
251), (0p, 211, 224).

Otherwise, consider the following collection of blocks:

01, ((c — DM +10)/6 — 2¢)y, ((k = DM/2) —r)) forr = 1,2, ..., ((k — 1)
M —2)/12,
01, (((k — DM — 8)/6 — 21, (((k — DM — 5)/3) — r)1) for r = 1,2,...,

((k — DM — 50)/24 (omit if M = 26),
O, ((k— DM — 1) /12 =28) 1, (Tk— DM — 14) /24 — ) forr = 1,2, ...,
((k — 1)M — 50)/24,
O, (k — DM + 10)/12)), (Ttk — DM — 14)/24)1), Oy, 11, ((5(k — 1)
M + 14)/24)1),
O1, (((k — DM — 14)/12), (((k — DM —5)/3) 1) (omit if M = 26),
O, (((k = DM —8)/6)1, (5k — DM — 10)/12)1), (00, Oy, (kM /2)1),
O, (M — 1)1, ((k+ DM —=2)/2+r))forr =1,2,..., (M —-2)/4,
O, (M —=2)/2) — )1, (kM —2)/2+r))forr=1,2,..., (M —2)/8,
(00, (BM —06)/8—1r), (B + )M +6)/8+r)) forr=1,2,..., (M — 18)/8,
(o, (M + 6)/8)1, (((4k + )M — 2)/8)1), (0o, (BM — 2)/4)i, (((2k + 1)
M — 2)/4)1), and
(0o, (M —2)/2)1, ((k + DM + 2}/4)1).
Case 2. Suppose that M = 2 (mod 24) and & = 3 (mod 12). Consider the following
collection of blocks:
(01, (kM/3)1, kM [3)1), (00,01, (kM /2)1),
Oy, kM /6 —2r)1, (kM2 —r))) forr=1,2,..., ((k — DM —4)/12,
(O, (kM 4+ 6)/6 — 2¢), kM /3 — ) forr =1,2,...,((k — )M — 4)/12,

(0o, (M+4)/3—1)1, (Bk-+3)M —12)/1247r)y) forr = 1,2, ..., (M +10)/12,
(o, (M -+ 1)/3 + 11, Bk + 5YM + 8)/12 — #)y) for r = 1,2,...,
(M —2)/12,

Oo, ((Bk + SYM — /12 + ), (8k + 6OM + 12)/12 — r),) for
r=1,2,...,(M-2)/12,

(00, ((Bk + DHM/6 + r)y, ((13k + DM + /12 — #)y) for r = 1,2,...,
(M — 2)/24,

(0o, (((16k + 1M — 2)/24 + )1, (((16k + 1M + 14)/24 — r);) for
r=1,2,...,(M—=2)/12,

0o, (((16k + 1TYM — 10)/24 + )y, (((16k + 2D)M + 30)/24 — r);) for
r=1,2,...,(M—2)/24,

(0o, (((16k + 18YM — 12)/24 + r), ((26k + 18)M /24 — r))) for r = 1,2, ...,
(M —2)/24,

(0o, ((26k + 155M + 6)/24 + )i, ((26k + 1M + 2)/24 — r),) for
re=1,2,..., (M —26)/24,

00, (((13k + THM + 4)/12)1, ((26k + 16)M + 4)/24)1).

Case 3. Suppose that M = 2 (mod 24) and & = 6 (mod 12). Consider the following
collection of blocks:
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(01, (kM /41, (SkM /12)1), (01, (kM /3)1, kM /3)1),

O, ((k+ DM —8)/64+r)1, (Qk—1)M +8)/6 —r)1) forr =1,2,..., ((k—2)
M +4}/12,

(O, kM/3 4+ 7)1, (kM —2)/2 —r)) forr=1,2,..., (kM —24)/12,

(00, 01, (kM /2)1), (Bo, O, (SEM /12 — 1)1),

(0o, (M —2)/2+ 1)y, (((k+3)M —6)/6 —r)y)forr =1,2,..., (M — &)/6,
(Oo, (M —5)/3)1, (M —2)/3)1), Oo, (M — 6)/4)1, ((4k -+ 1IM — 2)/12)1),
(0o, (M —6)/4—r)1, (((2k+3DM—18)/12+r)) forr = 1,2,. .., (M - 14)/12,
(0o, (M —=2)/1241)1, (((Bk+ DM —=2)/12—r)) forr = 1,2, ..., (M —14)/12,
(0p, (OM—18)/12—r)1, (((2k+9)M—30)/12+4r) ) forr = 1,2, ..., (M—2)/12,
(0p, (11M — 46)/12 + )1, (((4k + 11)M — 34)/12 — r)) for r = 1,2,...,
(M — 14)/12,

(0o, (M —3)1, (((k +6)M — 24)/6)1), and (Og, (M — 1)1, (k+2)M — 4)/2)1).

Case 4. Suppose that M = 2 (mod 24) and k& = 11 (mod 12). Consider the following
collection of blocks:

©1, (k=DM —8)/6—2r)1, ((k— DM =2)/2—r)) forr = 1,2, ..., ((k—1)
M —20)/12,
01, (k= DM —2)/6—2r), ((k— DM —=2)/3—r)) forr = 1,2, ..., ((k—1)
M — 44) /24,

O1, (((e—1)M—8)/12=2r)1, (Ttk—~1)M +4)/24—r} ) forr = 1,2, ..., ((k—1)
M — 44) /24,

Or, (((k — DM + 16)/12)1, (T(k — DM + 4)/24)1), O, 11, (G — DM +
20)/24)v),

O1, (=DM ~8)/12)1, (k=DM ~2)/3)), (01 (((k=1)M —=8)/6)1, ((S(k D
M —4)/12)1),

O1, (((k — DM —~2)/6)1, ((k — 1)M/2)1), (00, O1, (kM /2)1),

(0o, 01, (((k — DM - 2)/2)1), g, (M —10)/8)1, (((4k — 1IM -~ 6)/8)1),

o, (M —2)/8)1, (((4k — 3)M + 6)/8)1), (Oo, (M —2)/H)1, (kM — 4)/2) 1),
o, (M +2)/4)1, ((2k + 1HM — 6)/4)1),

(0o, (M — /2 +r)1, ((k+ DM —2)/2 =) forr =1,2,..., (M —2)/4,
(0o, r1, (kM —4)/2 — r)y) forr = 1,2,..., (M — 18)/8, and

(O, (M +6)/8 + )1, ((4k — 1)M — 6)/8 1)) forr =1,2,..., (M — 18)/8.

In each case, the given collection of blocks, along with a collection of base blocks for
a 1-rotational ST'S(M + 1) on the point set {o0} | J Zp x {0} under the automorphism
(00)(0g, 1o, ..., (M — 1)p), forms a collection of base blocks fora ST S of the desired

type. 0

Lemma 5 If M = 8 (mod 24) and k = 0 or 2 (mod 3), then there exists a tricyclic
ST S(v) as described above.

Proof Consider the given collections of blocks.
Case 1. Suppose that M = 8 (mod 24) and & = 0 (mod 12). Consider the following

collection of blocks:

(01, kM6 + 7)), kM/3 —¥)) forr=1,2,..., (kM —12)/12,

LN Consion v
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(01, ((2k+1)M —8)/6+r)1, (Bk— )M +2)/6—r) ) forr = 1,2, ..., ((k—2)
M —8)/12,

(Or, kM /4)1, (SkM /12)1), (01, (kM /3)1, 2kM/3)1), (00, Oy, (kM /2)1),

(Oo, (M —8)/6)1, (M —2)/6)1), (0o, (TM —20)/12)1, (((6k+5)M —16)/12)),
(0p, (M —2)/6 + 1)1, (k4 1)M —8)/6 —r)1) forr = 1,2, ..., (M — 8)/6,
©o, (BM—16)/12—r)|, (4k+5)M—16)/12+r) ) forr = 1,2, ..., (M~—8)/12,
g, ((TM—20)/12-+r), (((6k+T)M —20)/12—r) ) forr = 1,2, ..., (M~8)/12,
(0o, (8M — 28)/12 + r)1, ((4k + 1O)M — 32)/12 — 7)) for r = 1,2, ...,
(M —8)/12,

(0o, (11M — 40)/12 + )1, (((6k + 1M — 52)/12 — 7)) for r = 1,2, ...,
(M —20)/12, |

(Oo, (11M — 40)/12)y, ((Qk + 11)M — 52)/12)1), (Oo, (M —~ 3)1, (((k + 2)
M —8)/2)1), and

(0o, (M — 1)1, (5k + 12)M — 24)/12),).

Case 2. Suppose that M = 8 (mod 24) and &k = 2 (mod 6). Consider the following
collection of blocks:

O (k=DM +4/6 —2r), (k- DM/2 —r)) forr = 1,2,..., (k- 1)
M - 8)/12,

O, (k — DM — 2)/6 — 2r);, (((k — DM — 2)/3 —r))) forr = 1,2,...,
((k - 1M — 8)/24,

(O, (&~ DM =20)/12 —2¢), (Ttk — 1YM — 8)/24 — ) ) forr = 1,2, ...,
((k — 1)M — 56)/24 (omit if M = 8),

01, Iy, (S~ 1) M +32)/24)1), (O, (((k—1)M =2)/6)1, ((SUk-—-1)M —~4)/12))),
(01, (((k = DM —20)/12)1, (((k — DM — 2)/3)1), (00, 01, (kM /2)1),

Oo, (M — 1), ((k+ DM ~ 42+ 1)) forr=1,2,..., M/4,

0o, (M —4)/2 — 1), (kM —2)/2+7)) forr=1,2,..., (M — 16)/8,

0o, (BM —8)/8 —r)1, (4k + 1DM/8 + 7)) forr=1,2,..., (M - 16)/8,
(o, (M/8)1, (((4k + 1)M — 8)/8)1), (O, (M — 4)/2)1, (((2k + 1YM — 4)/4)y)
(omit if M = R),

(0o, (BM — 4)/4)1, (2k + 1)M/4)1), and (O, (3M — 8)/8)1, (((4k + 1)
M —16)/8)().

Case 3. Suppose that M = 8 (mod 24) and £ = 3 (mod 12). Consider the following
collection of blocks:

(O, (kM /3)1, (kM /3)1), (o0, 01, (kM /2)1),

(O, (kM/6 — 2r)1, (kM/2 — r)p) forr = 1,2, ..., (k — DM — 4)/12,

O1, (kM -+ 6)/6 — 2r)1, (kM3 — F)1) forr = 1,2, ..., (k — )M — 4)/12,
O, (M + /3 - »HLUBE + 3)IM — 12)/12 4+ 1) for
re=1,2,. .., (M+4)/12,

(Op, (M —8)/124 ), ((BGk+2DM —4)/12—r)y) forr = 1,2, ..., (M—-8)/12,
©o, (((5k + 3)M + 12)/12 — 1)1, (8k + M — 16)/12 + r)y) for r =
0,1,2,...,(M+4)/12,

(Qp, (((5k +2)M — 4)/12)1, (((10k + DM + 4)/12)1)

(0g, ((5k + 3)M/12 + )y, ((10k + DM + 16)/12 — r)y) for r = 1,2. ...,
(M —8)/12,
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(00, ((10k 4 M + 16)/12)1, (10k + 2)M + 32)/12)1), (Op, ((10k + 3)
M +12)/12), (((10k 4 5)M + 8)/12)1),

(0o, (((10k + DM + 16)/12 + 1)1, (10k + )M)/12 — r)}) for r = 1,2, ...,
(M —20)/12.

If M = 32, also take the two blocks:
(O, (((10k + DHYM + 16)/12 + 7)1, (((10k + 1)M 4 52)/12 — r)y) forr =0, 1.
If M = 32, instead of the last two blocks, take the blocks:

(0o, (((10k -+ M + 12)/12 — 1, ((10k + DM + 16)/12 + r)y) for
r=1,2,..., (M —32)/24,

(00, (((20k + 5YM + 56)/24 — )1, (Q0k + )M + 48)/24 + r);) for
r=1,2,...,(M—32)/24,

(0o, (((10k + DM + 16)/12)1, (((10k + M + 20)/12)1), (O, (((20k + 3)
M+ 24)/24) 1, (((20k + 3)M + 48)/24)1).

Case 4. Suppose that M = 8 (mod 24) and & = 5 (mod 12). Consider the following
collection of blocks:

01, (k=DM +10)/6+ 1)1, (k=DM +T)/3=r)) forr =1,2,..., ((k—1)
M — 8)/24,

O1, ((5(k — DM +56)/24 + )1, (T — )M + 64)/24 — r)1) forr = 1,2, ...,
((k — )M — 32)/24,

O, (5 — DM+ 56)/24),(Bk — DM + 24)/8)1), O, ((k — 1)
M +8)/4)1, (5(k — )M +44)/12)1),

Op, (k= DM + 12)/4)1, (Gt — DM + 32)/12)1), Oy, ((k — 1)
M +7/3)1, ((5(k — DM +20)/12) 1),

On, (=DM +7)/3+r, (k—DM+4)/2=r))forr =1,2,...,((k—1)
M —8)/24,

01, (Blk — 1)M +24)/8 + r)y, (11(k — )M +56)/24 —r)y) forr = 1,2,...,
((k — )M — 56)/24,

o, (M = 2)/2+ 1)1, ((k+ DM —6)/2—r)) forr =1,2,..., (M — 8)/4,
©o, (r — D, (kM —4)/2 — r)y forr =1,2,..., (M — 16)/8,

(o, (M/8+ 7)1, (((4k — DM — 8)/8 —r)) forr =1,2,..., (M — 16)/8,

(Oo, (M —16)/8)1, (((4k — 1)M — 8)/8))1, (0o, (M — 8)/8)1, (M/&)1),

Qo, (M = 4)/4)1, (kM — 4)/2)1), (0o, (M /4)1, ((2k -+ 1M — 8)/4)1),

0o, (M — 2)/2)1, (((k + DM — 4)/2)1), (Oo, (M — 3)1, (M — 1)1), and
(00, 01, (kM /2)1).

Case 5. Suppose that M = 8 (mod 24) and & = 6 (mod 12). Consider the following
collection of blocks:

Oy, (kM /3)1, (2kM/3)1), (0, (kM —6)/6)1, (kM —3)/3)1), (00, 01, (kM [2)1),
O1, (+1)M =2) /6-+1)1, (kM —~3)/3—r))forr = 1,2,... ((k—1)M—-16)/12,
01, (kM /34 1)1, (BGk— DM +2)/6—r))forr =1,2,..., (k—1)M —4)/12.

If M = 8, also take these four blocks:
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(Oo, 11, (Bl + DM + 4)/12)1), Oo, ((Bk + DM — 8)/12)(, (9% + 1)
M —20)/12)y),

(0o, (%% + DM — 20)/12)1, (((11k + DM — 44)/12)1), 00, ((Bk + 1)
M+ 16)/12)1, (((5k + 1)M +28)/12)1).

If M = 32, instead of the last four blocks, take these blocks:

(Op, ((—kM -+ 4)/4),, (M +4)/12)1),

(Og, (M +10)/6 — 1)1, (kM —6)/6 +r))forr =1,2,..., (M +4)/12,

o, (M +T1/3 ), (Bk+ DM +4/6+4r))forr=1,2,..., (M +4)/12,
(o, ((—=3k + DM + 16)/12 — r)1,(((3k — DM + 8)/12 + r);) for
r=12,...,(M—8)/12,

(0p, (OM+48)/24—r) 1, ((4k+9)M+24)/24+-r) ) forr = 1,2, ..., (M —8)/24,
(Oo, (((=3k+ 1M +16)/12)1, (—k+3)M +12,12)1), (Og, (M — 1)1, (((k+5)
M +8)/6)1),

(0o, (((—=3k+1)M +40)/12), ((—k--3)M +24)/12)1), (0o, (M —3)1, (((k+5)
M —16)/6)1),

(Og, (((—3k+1)M +28)/12)1, (—k+ 1M +52)/12)1), (0o, (M —5)y, (((k+6)
M —12)/6)1).

IftM = 32, instead of the last tWo collections of blocks, take these blocks:

(Oo, (kM +4)/4)1, (M + 4)/12)1),

(0o, (M +10}/6 —r)), (kM —6)/6+ 7)) forr =1,2,..., (M +4)/12,

Oo, (M +T7/3—71)1, (Bk+DM+4)/6+r))forr=1,2,...,(M+4)/12,
Og, (((=3k + DM + 16)/12 — r)1, ((Bk — DM + 8)/12 + r)y) for r =
L,2,...,(M—8)/12,

(0o, (OM+48)/24—r)(, ((Ak+NM+-24)/24+r) ) forr = 1,2, ..., (M—8)/24,
(0, (((=3k + DM + /12 + r)y, ((—5k + 3)M + 24)/12 — r)y) for
r=12,..., (M +16)/24,

(Op, (((—06k -+ )M + 24)/24 + r), (((=2k + DM + 64)/24 — r)) for
r=1,2,..., (M +16)/24,

Oo, (((—0k + MM + 40)/24), (((—2k + 8)M + 56)/24 — r);) for
r=12,...,(M-32)/24,

(0o, (((=2k + TYM 4+ 64)/24)1, ((2k + DM + 96)/24)1), (0o, {2k + 9)
M +72)/24)1, (((6k + 11)M + 8)/24)),

(Oo, ((2k + DM -+ 48)/24)1, (((6k + 11)M + 32)/24)1), (0o, (((—2k + 8)
M + 56)/24)1, (((2k -+ 8)M + 104)/24)1),

(0o, (((k + DM +40)/12)1, ((—k + 5)M + 20)/12)1),

Op. (((6k + 11)M + 32)/24 + r)y, (((10k + 11)M -+ 8)/24 — r))) for
r=1,2,..., (M —56)/24,

(0o, {2k +9M +48)/24 —r)1, ((6k + DM +96)/24 + 1)) forr =1,2, ...,
(M — 80)/24. :

Case 6. Suppose that M = 8 (mod 24) and k = 9 (mod 12). Consider the following
collection of blocks:

Or, (ke + DM =8)/6+r)1, (kM/3—r))forr =1,2,..., (k- 1M —4)/12,
01, (k+ DM =2)/64-r)1, kM/2—r) ) forr = 1,2, ..., ((k—1)M —4)/12,
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O, (1+rn, (kM +6)/6 —r)) forr =1,2,..., (M +4)/12,

(0o, (M -+ /121, (Bk + 2)M — 4)/12)1), (Oo, ((—4k + 5)M + 8)/24)1,
((4k + 9)M /24)1),

Oo, (M+4H/124r)1, (CRk+DM+16)/12—r)) forr = 1,2, ..., (M+4)/12,
(0o, (CM+8)/124r)1, ((k+ DM +4)/6—r)1) forr =1,2,..., (M —8)/12,
(0o, GM/12+ 7)1, (A +5)M —4)/12 —r)y) forr =1,2,..., (M — 8)/24,
(Og, (TM — 8)/24 + r)1, ((—4k + )M + 16)/24 — r)y) for r = 1,2,...,
(M — 8)/12,

(Oo, (((=k -+ )M — 2)/6 + )1, (((k +2)M 4 2)/6 — r))) forr = 1,2, ...,
(M -- 8)/24,

(O, ((4k + DM/24 — ), (12K + DM/24 + ) for r = 1,2,...,
(M — 8)/24,

(Oo, ((12k+10)M —8) /244-r) 1, ((5k+3)M /6—r) ) forr == 1,2, ..., (M—8)/24,
and

(00, 01, (kM /2)1).

Case 7. Suppose that M = 8 (mod 24) and k = 11 (mod 12). Consider the following
collection of blocks:

O, (((k — DM + 4)/6 + )1, (2k — 2DIM + 2)/6 —r)) forr = 1,2,...,
((k — DM — 32)/24,

(O, (G, =M +32)/24 4+ 7)1, (T(k — DM +40)/24 —r)) forr = 1,2, ...,
((k — )M — 32)/24,

(01, (Btk — DM + 32)/24 + r)1, (12(k — )M /24 — r)) forr = 1,2,...,
(tk — )M —20)/12,

(01, (5 — 1)M + 8)/24)1, (5(k — DM + 32)/24)1), (01, (6% — 1)
M +24)/24) 1, ((8(k — 1)M + 32)/24)1),

(01, ((6(k — DM + 48)/24)), (10(k — DM + 16)/24)1), (01, (8k — 1)
M+ 8)/24)y, ((k — 1)M /2)1),

Og, M/24+7r)1. ((kR+1DM/2 - forr=1,2,...,(M —2)/6,

(0o, (CM —4)/6+1)1, (Bk+2DM+2)/6—r))) forr =1,2,...,(M—~2)/6—1,
(0o, 01, (((k — 1)M +-4}/6)1), (0o, ((2M —4)/6)1, (3kM —6)/6)1), (0o, (2M —
10)/6)1, (3kM /6)1),

(Qo, (M+4)/12)1, ((6k—3)M —24)/12)1), (O, ((Bk—2)M+4)/6)1, (((12k~9)
M - 12)/12)1),

(0o, (((24k — 1TYM — 56)/24), ((36k — 29)M — 32)/24)1),

(Oo, ((Bk —2)M +4)/6 + )1, (((6k —~ HM —10)/6 — r)1) forr =0,1,2, ...,
(M —8)/24 — 1,

(Op, (((6k — 3)M — 24)/12 — )1, (126 — OM — 12)/12 + ) for
r=1,2,...,(M—8)/24 -2

(Og, (r)1, ((Bk ~ 2)M 4+ 4)/6 — r);) forr = 1,2,...,(M — 8)/12, and (oo,
01, kM /2)1).

In each case, the given collection of blocks, along with a collection of base blocks for
a l-rotational S7'S(M + 1) on the point set {oo} | Zas x {0} under the automorphism
(c0)(0p, 1o, ..., (M -~ 1)q), forms a collection of base blocks for a ST of the desired

type. 0
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Lemmas 1-5 combine to give us necessary and sufficient conditions for the existence
of the desired type of ST S.

Theorem 3 A ST S(v) admitting an automorphism of type 7] = [1,0,...,0,1,
0,...,0,1,0,...,0l where m; = mryy = ny = 1, M < N, exists if and only if
M = 2 or 8 (mod 24) and N = kM where

1. if M =2 (mod?24)thenk =2,3,60r 11 (mod 12),
2. if M = 8 (mod 24) then k = 0 or 2 (mod 3).

4 Conjectures on the Remaining Tricyclic Steiner Triple Systems

In this section, we consider tricyclic STSs admitting automorphisms of type
f]=10,0,...,0,1,0,...,0,1,0,...,0,1,0,...,0)where mpy =ty = 7wp = 1,
v=M+N+ P,and M < N < P.In our discussion, we will let the point set of
such a system be Zy x {0} (JZpy x {1} |JZp x {2} and let the automorphism be
=0, 1o,.... (M — Do)(Or, 11,..., (N =102, 12, ..., (P — 1)2). Asin the
proof of Theorem 2, by considering 7#, we see that the ST'S(v) contains a cyclic
subsystem of order M and so M = 0 or 1 (mod 6), M # 9. We will now argue that
these types of tricyclic ST Ss fall into three categories. First, if M = 1, then the system
has a 1-rotational subsystern and necessary and sufficient conditions for such a system
were given in Sect. 3. So we now assume M > 1.

If M{N, say N = kM, then by considering 7", we see that the system has a bicy-
clic subsystem. Now consider edges of the form (by, ¢2). Some of the edges of this
type can be in blocks of the form (ag, b1, ¢2). However, there are more edges of the
form (b1, ¢z) (namely N P) than there are edges of the form {(ag, c2) (namely M P).
Therefore blocks of the form (ag, b1, ¢2) cannot contain all of the edges of the form
(b1, ¢2). Hence there must be some blocks of (ay, ba, c2). Since w * fixes edges of the
form (b2, ¢2), then =¥ must also fix vertex a; and so N | P. We therefore have the
following.

Conjecture I A ST S(v) admitting an automorphism of type [#] = [0,0,...,0,1,
0,...,0,1,0,...,0,1,0,...,0,1,0,...,0] where myy = ny = np = |, where
M < N < P and M|N, exists if and only if

1. M=1or3(mod6), M £9,

2. M+ N =1or3(modb6),

3. N|P,and

4, v=M+ N+ P =1o0r3 (modb6).

Notice that we have hypothesized the condition M | N in Conjecture 1. This
insures that the tricyclic ST'S has a bicyclic subsystem. However, we now show
by example that this condition is not necessary. Consider vertex set {Og, Lg, 29, 01,
I1,...,61,02,15,...,202} and the collection of blocks: (Og, 1o, 20), (01, 11, 31),
(00, 031, 02), (0o, 12, 22), (01, 12, 32), (01,22, 112), (01, 62, 122), (02,42, 112), (0,
32, 82). These blocks form a collection of base blocks for a tricyclic ST'S of order
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31 under the permutation = = (O, 19, 20)(01, L1, ..., 61) (02, 12,...,202). In the
notation of this section, we have M =3, N = 7, and P = 21, so we see that M does
not divide N. So the hypothesis M | N is not, in general, necessary.

If M does not divide N, then 7" fixes {0y, 11,..., (N — 1)1} only, and as in
Theorem 2, N = 1 or 3 (mod 6), N # 9. Since such a system must have a cyclic sub-
system on {Og, 1g, ..., (M — 1)¢} and a cyclic subsystem on {0y, 11, ..., (N — Il
then every edge of the form (ag, b;) must be in a block of the form (ag, b1, ¢2). Since
7 ICMBLN) fixesboth ag and by, then it must fix ¢z andso P | Lem(M, N). As described
above, there must be some block of the form (a1, b2, c2), a? fixes edge (b, €2), 50
¥ must fix aj and N | P. Next, consider edges of the form (ag, ¢2). Similar to the
argument above, there must be some block of the form (ao, b2, ¢2) and by considering
7M™ we see that M| P. Since both M| P and N|P, we have that P > lem(M, N).
Hence P = lecm(M, N). We therefore have the following.

Conjecture 2 A ST S(v) admitting an automorphism of type [r] = [0,0,...,0,
1,0,...,0,1,0,...,0,1,0,...,0,1,0,...,0] where npy = nmy = mp = |, where
M < N < P and M does not divide N, exists if and only if

1. M=1lor3(mod6), M £9,

2. N=1lor3(mod6), N #9,

3. P=Icm(M, N), and

4, v=M+ N+ P =1or3(mod6).

Therefore, we see that the tricyclic ST Ss of this section fall into three disjoint
categories: (1) those with 1-rotational subsystems (as described in Sect. 3), (2) those
with bicyclic subsystems (as described in Conjecture 1), and (3) those without bicyclic
subsystems (as described in Conjecture 2). We conjecture that the tricyclic ST'Ss of
Sect. 2, combined with these ST'Ss, will completely classify tricyclic Steiner triple
systems.
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